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Abstract— iTrace is community infrastructure that allows 

software engineering researchers to conduct eye-tracking studies 

on large realistic code bases. The iTrace infrastructure consists of 

a set of tools that assist with gathering, processing, and evaluating 

eye-tracking data on large software projects within an Integrated 

Development Environment (IDE). A typical eye-tracking study 

results in millions of raw gazes that are overwhelming to view and 

sort through. To help researchers view and comprehend this data, 

iTrace-Visualize is presented. This tool integrates information 

produced by the iTrace infrastructure into a dynamic video 

recording of the eye-tracking session. Eye fixations and the scan 

path between fixations are overlayed on the video. Additionally, 

the line being examined can be highlighted in the video. iTrace-

Visualize lets a researcher replay eye fixations via a video overlay 

immediately after a study. This serves as quick validation of what 

was done during the study and can also provide quick insights into 

what the participants looked at. To illustrate iTrace-Visualize’s 

capabilities, a small preliminary study is performed. 

Demo Video—https://youtu.be/c1hUFDmBM50 
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I. INTRODUCTION 

The iTrace infrastructure is used by software engineering 
researchers to perform eye-tracking studies in development 
environments [1-4]. Normally, eye-tracking studies are 
performed on static, unmoving stimuli. Software engineering 
studies that use eye-tracking have been typically performed on 
a static snippet of code. This is limiting, as the amount of code 
a participant can view is only what can fit on a screen. 
Additionally, participants are viewing the code outside of a 
normal development environment they use. To address this 
threat to validity, the iTrace infrastructure provides iTrace-Core 
and the iTrace IDE Plugins. An IDE Plugin is loaded alongside 
iTrace-Core to perform an eye-tracking study. iTrace-Core 
gathers raw gaze data from the eye-tracker, while the IDE Plugin 
gathers contextual information from the IDE, such as file and 
the line/column of where the user is looking. The output from 
iTrace-Core and the IDE Plugins are fed into iTrace-Toolkit. 
iTrace-Toolkit can then be used to convert the gaze data into eye 

fixations, and along with a srcML [5-6] file of the source code, 
gather contextual information relating to the language context of 
the source code. 

Researchers still face the issue of visualizing the collected 
eye-tracking data. A five-minute eye-tracking session using a 
120Hz eye-tracker generates around 36,000 raw eye gazes and 
depending on the fixation generation algorithm used in iTrace-
Toolkit, hundreds of fixations. To view the data, researchers 
typically open the files with a database browser, or they output 
results into a text file and then manually examine them. While 
information such as the token and context can be understood 
from these formats, information like the x and y pixel 
coordinates and the duration are difficult to follow.  

Members of the iTrace users community have requested the 
ability to have a simple way to visualize the information 
generated by iTrace. To help researchers view the gazes (raw 
pixel locations of the eye moving), fixations (sustained areas 
where the eye maintains focus), saccades (the path the eye takes 
between fixations), and other gathered information, we created 
iTrace-Visualize. iTrace-Visualize is a tool that combines data 
gathered from previous steps (typically after the data runs 
through Toolkit [4]) and marks up a video to display the data in 
a simple and concise way. iTrace-Visualize offers the following 
features: 

• Gaze Markup: Using the gaze and IDE context data 
gathered from iTrace-Core and an IDE Plugin, the gazes 
are displayed on the video when they occur in real-time. 

• Fixation Markup: Like the gaze markup, fixations 
generated in iTrace-Toolkit can be displayed. Specific 
fixation runs can be chosen if multiple runs are available 
in Toolkit. Several fixation algorithms are supported.  

• Saccade Markup: Saccades, the path the eye takes 
between fixations, are calculated and drawn to the video. 



 

 

• Code Highlighting: By putting video frames through an 
image processing pipeline, each line of code is detected 
and given a bounding box. iTrace-Visualize then 
highlights the line when a fixation is within the bounds. 

• Video Interpolation Stretching: If a high-speed eye-
tracker is used during the eye-tracking session, and the 
refresh rate is much higher than the frames-per-second 
(fps) of the recorded video, iTrace-Visualize can duplicate 
the frames of the video to stretch it out, allowing for more 
data to be displayed. 

• Fading Display: Due to the instantaneous nature of gazes, 
displayed gazes are displayed on a single frame before 
being replaced by the next gaze. To solve this, a fading 
display is implemented to slowly fade away old gazes so 
instead of one single gaze point flitting around the video, 
a cloud of gaze points shifts around the screen. 

• Options Customization: Multiple options within iTrace-
Visualize can be customized and changed, granting 
researchers the ability to customize display information. 

Trace-Visualize is currently the last step of the iTrace 
infrastructure, as it makes use of information from almost every 
previous step in the process. Figure 1 details where iTrace-
Visualize lies within the greater iTrace infrastructure. 

 

Figure 1: iTrace-Visualize within the iTrace Infrastructure and its 
input/output 

II. RELATED STUDIES 

Previous work has been done on how to best visualize eye-
tracking data. Špakov and Miniotas did work on visualizing the 
data as a heat map over the source [7]. Similar studies by Punde, 
et al. [8] and Pfeffer and Memili [9] have been done using 
heatmaps. This method was explored for use within iTrace-
Visualize, but it was ultimately decided that a heat map does not 
fit the dynamic nature of a software engineering study, due to 

the large amount of color and detail on the stimulus, and the time 
progressing nature of the eye-tracking data. Additionally, 
because iTrace-Visualize has different data to mark up 
(saccades, gazes, fixations), using heatmaps becomes 
complicated and difficult to read. We prioritized 
fixations/saccades over heatmaps as they are more focused on 
what was looked at by the individual person. Other types of 
visualizations using graph embeddings [10] are proposed by 
Zhang et al. however these are seen as more specific to a task 
and not real-time like iTrace-Visualize. 

Previously within iTrace we explored visualizing gazes as 
they are being recorded. iTrace Eclipse, introduced by Sharif 
and Maletic, has a feature that highlights any token that falls 
under the gaze within the IDE [1-2]. Work has also been done 
by Clark and Sharif on iTraceVis [11], an early feature in iTrace-
Eclipse that supported live visualization directly in Eclipse. 
These features are what inspired us to build iTrace-Visualize. 
Using it allows a researcher to go from conducting the study to 
visualizing the data for quick insights. It was also the most 
requested feature from the community.  

III. ARCHITECTURE 

A. Implementation 

iTrace-Visualize is implemented using Python and the QT 
Python Bindings [12]. iTrace-Visualize consists of a simple GUI 
that consists mostly of buttons for importing data and 
customizing output options. The OpenCV Python bindings [13] 
are used for line detection. Python v. 3.11 was used for 
development, but previous versions of Python that support the 
QT Bindings and OpenCV will also work. 

To display markup, iTrace-Visualize creates a list of 
timestamps that correspond to every frame of the video and 
gathers a list of every element of data that the researcher wants 
to display. Every list is then looped through, and timestamps are 
compared. If the timestamp of a particular data point matches 
the current frame, the data is drawn. 

B. Video Gathering  

For iTrace-Visualize to markup a video, a video recording 
must be taken of the eye-tracking session. However, because of 
how iTrace-Visualize draws markup based on the timestamp of 
the data, making sure the video’s start and end match perfectly 
with the start and end of the eye-tracking session is very 
important. Manually taking a recording of the session can 
introduce slight timing offsets, which results in the whole output 
being off. 

To solve this problem, a plugin was developed for the OBS 
program, called iTrace-ScreenRecord. OBS [14] (Open 
Broadcaster Software) is a program designed for the recording 
and streaming of desktop programs. A researcher can set OBS 
to record the IDE before a session and connect OBS to iTrace-
Core using iTrace-ScreenRecord. After connecting, OBS will 
automatically trigger a local recording to start when the “Start 
Tracking” button is pressed in iTrace-Core, and the recording 
will finish and save when the session is ending. This recorded 
video will be approximately the same length as the session, and 
thus does not cause an offset or cutoff in the markup. Using OBS 
to record this video provides the advantages of allowing a 



 

 

researcher to record desktop and microphone audio, the entire 
desktop or specific programs, and all the other features that OBS 
provides such as placement of user image on an overlay. 

C. Gaze and Fixation Markup 

Gaze data is relatively simple to draw for markup. Gazes 
have no duration, and only have an (x, y) pixel coordinate value 
and a timestamp. Gazes are selected per recording session and 
can be chosen from a selection menu within iTrace-Visualize. 
Gazes are drawn as a simple five-pixel radius circle on the 
video. 

Fixations can be selected after choosing a recording session 
and are drawn in a similar way to gazes, as a circle. However, 
fixations have a duration, and so are drawn onto the screen for 
more than a single frame. Fixations are drawn onto the screen 
for as many milliseconds as their duration. Fixations also grow 
over their duration, so longer fixations end up being larger than 
shorter ones. 

D. Saccade Markup 

A saccade is shown as a line navigating between two 
consecutive fixations. Currently, saccades are not calculated 
during any previous step within the iTrace infrastructure. It is 
intended for iTrace-Toolkit to eventually do this, but for now 
iTrace-Visualize calculates the saccades. Saccades are drawn as 
a series of white lines between two fixations. While they do not 
have a predefined duration like fixations, they will be drawn on 
screen for all valid gazes. 

E. Code Highlighting 

Along with marking up the concrete eye-tracking data, 
iTrace-Visualize provides an optional feature to highlight the 
line of code that the user was looking at during a fixation. This 
information gives researchers a visual way to see what coding 
constructs a participant looks at while analyzing code. 

Before iTrace-Visualize highlights the line, each frame of 
the video must be prepared so that the bounding boxes of each 
line are determined. To do so, the frame is put through a couple 
steps, some of which are seen in Figure 2: 

1. If the frame is from an IDE using a dark mode theme, the 
image must be inverted first, so the frame is similar to a 
light mode theme. 

2. The image is converted to grayscale, and then darkened. 
This causes any changes in font color, which is common in 
IDE’s due to syntax highlighting, to become evened out. 

3. The image is dilated, with an emphasis on horizontal 
dilation. The horizontal dilation causes characters and 

words on a line to merge into each other, while lines stay 
separated. 

4. For each blur in the dilated image, a flood fill algorithm 
is used to find the bounding box coordinates of the blur. 

The bounding box coordinates gathered at the end of the 
process are then used for both calculating if a fixation is looking 
at a particular line, as well as providing the dimensions for 
which pixels to affect to highlight the line. 

A major issue with implementing the highlighting is how 
long identifying each bounding box can take, especially 
considering the efficiency of the flood fill algorithm. If each 
frame is individually calculated, the process will take hours. To 
solve this, iTrace-Visualize calculates the bounding boxes 
once, and reuse them until the scene drastically changes. Every 
frame is compared to the previous one, and if the percentage of 
change is over five percent, the previous boxes are discarded, 
and a new set is calculated. 

F. Video Interpolation Stretching 

Most current eye-trackers available to researchers have 
refresh rates higher than 60Hz. This means that any screen 
recording made of a session using these eye-tracker must be 
recorded at a higher FPS to prevent gazes from being skipped 
during visualization. Most machines and a lot of monitors 
cannot record and display video consistently at framerates 
higher than 144Hz. The fading display helps combat this by 
displaying any skipped gazes as already fading, but the multiple 
gazes still appear at once. To help combat this issue, iTrace-
Visualize artificially stretches a video out by adding duplicate 
input frames to be processed. Each duplicated frame is added to 
the input queue and given an interpolated timestamp. These 
frames are treated as normal input, and any data that aligns with 
the frame’s timestamp are drawn on as normal.  

Videos can be extended by any integer factor, with a factor 
of N adding N duplicates of each frame. The output videos is N 
times longer than the input video, as the output will always be 
the same framerate as the input. This has the side effect of 
causing the video to appear to be running in slow motion, and 
no longer be in real time. 

G. Fading Display 

Gazes are an instantaneous data point, only appearing on the 
frame closest to their timestamp. Because of this, when viewing 
a video, a single gaze dot will jump around the screen every 
frame and is hard and disorienting to follow. To remedy this, a 
fading approach to displaying data is adopted. Instead of 
drawing only the most current data, all data points that occurred 
in the past within a customizable period are drawn. By default, 

Figure 2: From left to right – an input image (inverted), the darkened grayscale image, the image dilation, and the lines’ bounding boxes. 



 

 

iTrace-Visualize draws everything within a one second 
window. These markups slowly fade out, to prevent crowding 
of the data. Figure 4 details the change in display methods. 

 

Figure 4: A frame of marked video without fading (left) and with 
fading (right) shown on different snippets. 

 

H. Options Customization 

To grant researchers the ability to fine tune their visualized 
data, iTrace-Visualize allows a researcher to tweak various 
values and options for their output. 

• Fixation Drawing: If a researcher does not want fixations 
to be displayed, they can avoid selecting a fixation run in 
the top-right list of runs after selecting a session. 

• Saccade Drawing: A checkbox is provided to enable and 
disable the selection of saccades. 

• Line Highlighting: Like saccades, a checkbox is provided 
to enable and disable the highlighting of lines. This feature 
also is not performed if fixations are not selected. 

• Value Tweaking: Gaze size, fixation base size, video 
stretch factor, and the fade delay can be manually adjusted 
through a number text box. 

IV. PRELIMINARY STUDY 

To test iTrace-Visualize, a small scale preliminary study is 
conducted with four members of the iTrace development team. 
To begin, a normal eye-tracking session is set up using iTrace-
Core (with DejaVu [3] enabled via a checkbox) and whatever 
IDE the participant preferred. For this test, we used the iTrace-
Atom plugin. We used the DejaVu option to keep track of the 
mouse scrolls and accurately record data over 60 Hz [3]. 
Recording with DejaVu is not required to use iTrace-Visualize. 
The participants are given a small part of iTrace-Toolkit’s 
source code, and asked to read the function name in every .h 
file and read through a random function of their choice in the 
controller.cpp file. Participants are instructed to set up 
OBS and iTrace-ScreenRecord during the recording as well. 
After recording, participants are instructed to run the source 
code through srcML, and then use iTrace-Toolkit to map tokens 
and generate a set of fixations with every algorithm. 

After gathering all the data and videos from the participants, 
the first author ran each session through iTrace-Visualize. The 
output videos are collected and watched through, and compared 
to standard heatmap style images from the heat map studies 
mentioned in Section II [7-9]. Table 1 details the sessions and 
how long they took to process. For consistency, only fixations 
calculated with the IDT algorithm [15] in iTrace-Toolkit are 
displayed and counted.  

Table 1: Sessions gathered and put through iTrace-Visualize. All 
time values are in hh:mm:ss 

Participants 1, 2, and 4 used the Tobii Pro Spectrum eye-
tracker at 300Hz, while participant 3 used the Tobii Pro X3-120 
eye-tracker at 120 Hz. Because participant 3 used a lower speed 
tracker, they have significantly less gazes for the amount of 
time recorded (around 5 mins). This also affects the number of 
fixations, as participant 3’s gazes are less dense, causing more 
to be registered. Despite this, participant 3 has similar number 
of gazes as participants 1 and 2, and thus has a similar 
processing time when not doing line highlighting. Participant 4, 
has almost double the number of gazes and double the 
processing time. 

Line highlighting affects processing time differently. 
Because the bounding boxes must be re-calculated when the 
screen significantly shifts, things like scrolling the screen or 
opening a context menu causes delays in processing. Participant 
3 has the largest number of mouse scrolls, which results in the 
largest difference in processing time when processing without 
highlights compared to with highlights. This does not account 
for every increase in processing time, as other things like 
context menus and pop-ups also increase the time. 

V. DISCUSSIONS 

When comparing the two styles of visualizations, there is 
not a lot of objective pros and cons that can be listed, as 
preferences may be based on subjective choice. However, 
iTrace-Visualize’s implementation does provide some 
advtanages over the more traditional heatmap visualizations. 
The biggest improvement is the ability to view the data over 
time, and tell the order and duration of what a user looking at. 
While heatmaps can showcase the progression of time, changes 
in heatmaps take longer to update, as they are area based as 
opposed to iTrace-Visualize’s point-based system. Heatmaps 
also do not scale well with the differing speeds of eye-trackers 
and different fixation algorithms. Because different numbers of 
gazes can go into each fixation due to these factors, the 
heatmaps do not consistenly grow for each session, and some 
appear weaker. Additionally, iTrace-Visualize supports the 
drawing of multiple kinds of data (saccades, raw gaze, and 
fixations) that are not seen on heatmaps. 

iTrace-Visualize will take a good chunk of time to process 
a video as shown in Table 1. Even before the introduction of 
the fading display and line highlighting, iTrace-Visualize must 
draw markup on every single frame of a video, which at two 

Participant 1 2 3 4 

# of Gazes 40519 30453 35766 78594 

# of Fixations 

(IDT) 
254 211 1273 488 

# of Mouse Scrolls  70 114 368 108 

Session Time 0:02:15 0:01:41 0:04:57 0:04:21 

Proc. Time w/o 

Highlighting 
0:31:24 0:22:46 0:30:44 0:59:40 

Proc. Time w/ 

Highlighting 
0:42:12 0:37:55 1:21:09 1:35:15 



 

 

minutes and 60 fps is 7200 frames. Additionally, because of the 
fading display, multiple data points must be drawn on each 
frame. At 300Hz, roughly 300 gazes are drawn on each frame 
at varying levels of transparency. The average time spent on 
each frame is calculated in Table 2. For the 3 sessions recorded 
at 300Hz, the average processing time without highlighting is 
0.2283 seconds per frame. This is consistent regardless of video 
length. 

Table 2: Average processing time per frame in iTrace-Visualize. All 
time values are in seconds. 

When using highlighting, the scale is different. The percent 
increase in frame processing time does not stay consistent due 
to the number of bounding box calculations that must be 
performed. Out of the three participants at 300Hz, participant 2 
has the biggest percent increase, with 4 and 1 behind in order. 
This matches with the number of mouse scrolls in Table 1. This 
can also be seen with Participant 3, because despite having a 
much lower eye-tracker speed, there is an enormous increase in 
frame processing time due to the larger amount of bounding box 
refreshes that had to be performed. 

VI. CONCLUSIONS AND FUTURE WORK 

iTrace-Visualize takes eye movement data from the iTrace 
pipeline and marks up the data onto a video recording of an eye-
tracking session for other researchers to view and present their 
data. This is helpful for researchers so they can visually analyze 
their collected data for flaws and inconsistencies or compare 
data in a human-perceivable way.  

In the future, we plan to expand iTrace-Visualize by 
expanding the type of markup iTrace-Visualize can support. 
Mouse and keyboard information gathered from DejaVu [3] in 
iTrace-Core can be displayed through small visual annotations 
for keyboard presses and expanding/shrinking circles for mouse 
clicks. When the iTrace infrastructure supports the calculation 
of saccades, iTrace-Visualize will be updated to use those 
instead of manually calculating them from fixations. 
Highlighting will also be improved, with both line and token 
highlighting being offered. Currently, highlighting will only 
occur if a fixation occurs directly in the bounding box of a line. 
However, highlighting should occur if the fixation is close to 
the box as well, as the box will wrap the text to its pixel values, 
which does not necessarily match the dimensions of the line. 

Additionally, the processing speed for iTrace-Visualize will 
be improved. When dealing with numerous lengthy studies, the 
ability to generate a visualization of each session quickly is 
important. Allowing iTrace-Visualize to process the video in 
multiple threads will increase the speed. iTrace-Visualize can 
also take advantage of the GPU of the machine, if present, to 
drastically speed up the process. An open-source beta release 
will be available on our website at https://www.i-trace.org.   
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Participant 1 2 3 4 

Tracker Speed 300Hz 300Hz 120Hz 300Hz 

# of frames 8101 6081 17861 15709 

Proc. Time w/o 
Highlight 

1884 1366 1844 3580 

Avg. Frame 
Time w/o 
Highlight 

0.2325 0.2246 0.1032 0.2278 

Proc. Time w/ 
Highlight 

2532 2275 4869 5715 

Avg. Frame 
Time w/ 

Highlight 
0.3125 0.3741 0.2726 0.3638 

% Increase in 
Frame Time 134.3% 166.5% 264.0% 159.6% 


