1Trace-Visualize: Visualizing Eye-Tracking Data for
Software Engineering Studies

Joshua Behler Gino Chiudioni
Department of Computer Department of Computer
Science Science

Kent State University
Kent, Ohio, USA

jbehlerl @kent.edu

Kent State University
Kent, Ohio, USA

gchiudio@kent.edu

Bonita Sharif
School of Computing
University of Nebraska-Lincoln
Lincoln, Nebraska, USA

bsharif@unl.edu

Abstract— iTrace is community infrastructure that allows
software engineering researchers to conduct eye-tracking studies
on large realistic code bases. The iTrace infrastructure consists of
a set of tools that assist with gathering, processing, and evaluating
eye-tracking data on large software projects within an Integrated
Development Environment (IDE). A typical eye-tracking study
results in millions of raw gazes that are overwhelming to view and
sort through. To help researchers view and comprehend this data,
iTrace-Visualize is presented. This tool integrates information
produced by the iTrace infrastructure into a dynamic video
recording of the eye-tracking session. Eye fixations and the scan
path between fixations are overlayed on the video. Additionally,
the line being examined can be highlighted in the video. iTrace-
Visualize lets a researcher replay eye fixations via a video overlay
immediately after a study. This serves as quick validation of what
was done during the study and can also provide quick insights into
what the participants looked at. To illustrate iTrace-Visualize’s
capabilities, a small preliminary study is performed.

Demo Video—https://youtu.be/c1hUFDmBMS50

Keywords—eye tracking, fixations, pipeline

[. INTRODUCTION

The iTrace infrastructure is used by software engineering
researchers to perform eye-tracking studies in development
environments [1-4]. Normally, eye-tracking studies are
performed on static, unmoving stimuli. Software engineering
studies that use eye-tracking have been typically performed on
a static snippet of code. This is limiting, as the amount of code
a participant can view is only what can fit on a screen.
Additionally, participants are viewing the code outside of a
normal development environment they use. To address this
threat to validity, the iTrace infrastructure provides iTrace-Core
and the iTrace IDE Plugins. An IDE Plugin is loaded alongside
iTrace-Core to perform an eye-tracking study. iTrace-Core
gathers raw gaze data from the eye-tracker, while the IDE Plugin
gathers contextual information from the IDE, such as file and
the line/column of where the user is looking. The output from
iTrace-Core and the IDE Plugins are fed into iTrace-Toolkit.
iTrace-Toolkit can then be used to convert the gaze data into eye

Alex Ely Julia Pangonis
Department of Computer Department of Computer
Science Science

Kent State University
Kent, Ohio, USA

acly3@kent.edu

Kent State University
Kent, Ohio, USA

jpangoni(@kent.edu

Jonathan 1. Maletic
Department of Computer Science
Kent State University
Kent, Ohio, USA

jmaletic@kent.edu

fixations, and along with a sccML [5-6] file of the source code,
gather contextual information relating to the language context of
the source code.

Researchers still face the issue of visualizing the collected
eye-tracking data. A five-minute eye-tracking session using a
120Hz eye-tracker generates around 36,000 raw eye gazes and
depending on the fixation generation algorithm used in iTrace-
Toolkit, hundreds of fixations. To view the data, researchers
typically open the files with a database browser, or they output
results into a text file and then manually examine them. While
information such as the token and context can be understood
from these formats, information like the x and y pixel
coordinates and the duration are difficult to follow.

Members of the iTrace users community have requested the
ability to have a simple way to visualize the information
generated by iTrace. To help researchers view the gazes (raw
pixel locations of the eye moving), fixations (sustained areas
where the eye maintains focus), saccades (the path the eye takes
between fixations), and other gathered information, we created
iTrace-Visualize. iTrace-Visualize is a tool that combines data
gathered from previous steps (typically after the data runs
through Toolkit [4]) and marks up a video to display the data in
a simple and concise way. iTrace-Visualize offers the following
features:

e Gaze Markup: Using the gaze and IDE context data
gathered from iTrace-Core and an IDE Plugin, the gazes
are displayed on the video when they occur in real-time.

e Fixation Markup: Like the gaze markup, fixations
generated in iTrace-Toolkit can be displayed. Specific
fixation runs can be chosen if multiple runs are available
in Toolkit. Several fixation algorithms are supported.

e  Saccade Markup: Saccades, the path the eye takes
between fixations, are calculated and drawn to the video.



¢  Code Highlighting: By putting video frames through an
image processing pipeline, each line of code is detected
and given a bounding box. iTrace-Visualize then
highlights the line when a fixation is within the bounds.

e Video Interpolation Stretching: If a high-speed eye-
tracker is used during the eye-tracking session, and the
refresh rate is much higher than the frames-per-second
(fps) of the recorded video, iTrace-Visualize can duplicate
the frames of the video to stretch it out, allowing for more
data to be displayed.

¢ Fading Display: Due to the instantaneous nature of gazes,
displayed gazes are displayed on a single frame before
being replaced by the next gaze. To solve this, a fading
display is implemented to slowly fade away old gazes so
instead of one single gaze point flitting around the video,
a cloud of gaze points shifts around the screen.

e  Options Customization: Multiple options within iTrace-
Visualize can be customized and changed, granting
researchers the ability to customize display information.

Trace-Visualize is currently the last step of the iTrace
infrastructure, as it makes use of information from almost every
previous step in the process. Figure 1 details where iTrace-
Visualize lies within the greater iTrace infrastructure.

Toolkit l

- Session
iTrace Video
Database
Marked-
up Video

Figure 1: iTrace-Visualize within the iTrace Infrastructure and its
input/output

II. RELATED STUDIES

Previous work has been done on how to best visualize eye-
tracking data. Spakov and Miniotas did work on visualizing the
data as a heat map over the source [7]. Similar studies by Punde,
et al. [8] and Pfeffer and Memili [9] have been done using
heatmaps. This method was explored for use within iTrace-
Visualize, but it was ultimately decided that a heat map does not
fit the dynamic nature of a software engineering study, due to

the large amount of color and detail on the stimulus, and the time
progressing nature of the eye-tracking data. Additionally,
because iTrace-Visualize has different data to mark up
(saccades, gazes, fixations), using heatmaps becomes
complicated and difficult to read. We prioritized
fixations/saccades over heatmaps as they are more focused on
what was looked at by the individual person. Other types of
visualizations using graph embeddings [10] are proposed by
Zhang et al. however these are seen as more specific to a task
and not real-time like iTrace-Visualize.

Previously within iTrace we explored visualizing gazes as
they are being recorded. iTrace Eclipse, introduced by Sharif
and Maletic, has a feature that highlights any token that falls
under the gaze within the IDE [1-2]. Work has also been done
by Clark and Sharif on iTraceVis [11], an early feature in iTrace-
Eclipse that supported live visualization directly in Eclipse.
These features are what inspired us to build iTrace-Visualize.
Using it allows a researcher to go from conducting the study to
visualizing the data for quick insights. It was also the most
requested feature from the community.

III. ARCHITECTURE

A. Implementation

iTrace-Visualize is implemented using Python and the QT
Python Bindings [12]. iTrace-Visualize consists of a simple GUI
that consists mostly of buttons for importing data and
customizing output options. The OpenCV Python bindings [13]
are used for line detection. Python v. 3.11 was used for
development, but previous versions of Python that support the
QT Bindings and OpenCV will also work.

To display markup, iTrace-Visualize creates a list of
timestamps that correspond to every frame of the video and
gathers a list of every element of data that the researcher wants
to display. Every list is then looped through, and timestamps are
compared. If the timestamp of a particular data point matches
the current frame, the data is drawn.

B. Video Gathering

For iTrace-Visualize to markup a video, a video recording
must be taken of the eye-tracking session. However, because of
how iTrace-Visualize draws markup based on the timestamp of
the data, making sure the video’s start and end match perfectly
with the start and end of the eye-tracking session is very
important. Manually taking a recording of the session can
introduce slight timing offsets, which results in the whole output
being off.

To solve this problem, a plugin was developed for the OBS
program, called iTrace-ScreenRecord. OBS [14] (Open
Broadcaster Software) is a program designed for the recording
and streaming of desktop programs. A researcher can set OBS
to record the IDE before a session and connect OBS to iTrace-
Core using iTrace-ScreenRecord. After connecting, OBS will
automatically trigger a local recording to start when the “Start
Tracking” button is pressed in iTrace-Core, and the recording
will finish and save when the session is ending. This recorded
video will be approximately the same length as the session, and
thus does not cause an offset or cutoff in the markup. Using OBS
to record this video provides the advantages of allowing a



void changeFilePathOS(QString& path) {
#ifdef Q_0S_WIN
path.remove("file:///");
#else
path.remove("file://");
#endif

Figure 2: From left to right — an input image (inverted), the darkened grayscale image, the image dilation, and the lines’ bounding boxes.

researcher to record desktop and microphone audio, the entire
desktop or specific programs, and all the other features that OBS
provides such as placement of user image on an overlay.

C. Gaze and Fixation Markup

Gaze data is relatively simple to draw for markup. Gazes
have no duration, and only have an (x, y) pixel coordinate value
and a timestamp. Gazes are selected per recording session and
can be chosen from a selection menu within iTrace-Visualize.
Gazes are drawn as a simple five-pixel radius circle on the
video.

Fixations can be selected after choosing a recording session
and are drawn in a similar way to gazes, as a circle. However,
fixations have a duration, and so are drawn onto the screen for
more than a single frame. Fixations are drawn onto the screen
for as many milliseconds as their duration. Fixations also grow
over their duration, so longer fixations end up being larger than
shorter ones.

D. Saccade Markup

A saccade is shown as a line navigating between two
consecutive fixations. Currently, saccades are not calculated
during any previous step within the iTrace infrastructure. It is
intended for iTrace-Toolkit to eventually do this, but for now
iTrace-Visualize calculates the saccades. Saccades are drawn as
a series of white lines between two fixations. While they do not
have a predefined duration like fixations, they will be drawn on
screen for all valid gazes.

E. Code Highlighting

Along with marking up the concrete eye-tracking data,
iTrace-Visualize provides an optional feature to highlight the
line of code that the user was looking at during a fixation. This
information gives researchers a visual way to see what coding
constructs a participant looks at while analyzing code.

Before iTrace-Visualize highlights the line, each frame of
the video must be prepared so that the bounding boxes of each
line are determined. To do so, the frame is put through a couple
steps, some of which are seen in Figure 2:

1. If the frame is from an IDE using a dark mode theme, the
image must be inverted first, so the frame is similar to a
light mode theme.

2. The image is converted to grayscale, and then darkened.
This causes any changes in font color, which is common in
IDE’s due to syntax highlighting, to become evened out.

3. The image is dilated, with an emphasis on horizontal
dilation. The horizontal dilation causes characters and

words on a line to merge into each other, while lines stay
separated.

4. For each blur in the dilated image, a flood fill algorithm
is used to find the bounding box coordinates of the blur.

The bounding box coordinates gathered at the end of the
process are then used for both calculating if a fixation is looking
at a particular line, as well as providing the dimensions for
which pixels to affect to highlight the line.

A major issue with implementing the highlighting is how
long identifying each bounding box can take, especially
considering the efficiency of the flood fill algorithm. If each
frame is individually calculated, the process will take hours. To
solve this, iTrace-Visualize calculates the bounding boxes
once, and reuse them until the scene drastically changes. Every
frame is compared to the previous one, and if the percentage of
change is over five percent, the previous boxes are discarded,
and a new set is calculated.

F. Video Interpolation Stretching

Most current eye-trackers available to researchers have
refresh rates higher than 60Hz. This means that any screen
recording made of a session using these eye-tracker must be
recorded at a higher FPS to prevent gazes from being skipped
during visualization. Most machines and a lot of monitors
cannot record and display video consistently at framerates
higher than 144Hz. The fading display helps combat this by
displaying any skipped gazes as already fading, but the multiple
gazes still appear at once. To help combat this issue, iTrace-
Visualize artificially stretches a video out by adding duplicate
input frames to be processed. Each duplicated frame is added to
the input queue and given an interpolated timestamp. These
frames are treated as normal input, and any data that aligns with
the frame’s timestamp are drawn on as normal.

Videos can be extended by any integer factor, with a factor
of N adding N duplicates of each frame. The output videos is N
times longer than the input video, as the output will always be
the same framerate as the input. This has the side effect of
causing the video to appear to be running in slow motion, and
no longer be in real time.
G. Fading Display

Gazes are an instantaneous data point, only appearing on the
frame closest to their timestamp. Because of this, when viewing
a video, a single gaze dot will jump around the screen every
frame and is hard and disorienting to follow. To remedy this, a
fading approach to displaying data is adopted. Instead of
drawing only the most current data, all data points that occurred
in the past within a customizable period are drawn. By default,



iTrace-Visualize draws everything within a one second
window. These markups slowly fade out, to prevent crowding
of the data. Figure 4 details the change in display methods.

s/stat.h>

Figure 4: A frame of marked video without fading (left) and with
fading (right) shown on different snippets.

H. Options Customization

To grant researchers the ability to fine tune their visualized
data, iTrace-Visualize allows a researcher to tweak various
values and options for their output.

¢ Fixation Drawing: If a researcher does not want fixations
to be displayed, they can avoid selecting a fixation run in
the top-right list of runs after selecting a session.

e Saccade Drawing: A checkbox is provided to enable and
disable the selection of saccades.

¢ Line Highlighting: Like saccades, a checkbox is provided
to enable and disable the highlighting of lines. This feature
also is not performed if fixations are not selected.

e Value Tweaking: Gaze size, fixation base size, video
stretch factor, and the fade delay can be manually adjusted
through a number text box.

IV. PRELIMINARY STUDY

To test iTrace-Visualize, a small scale preliminary study is
conducted with four members of the iTrace development team.
To begin, a normal eye-tracking session is set up using iTrace-
Core (with DejaVu [3] enabled via a checkbox) and whatever
IDE the participant preferred. For this test, we used the iTrace-
Atom plugin. We used the DejaVu option to keep track of the
mouse scrolls and accurately record data over 60 Hz [3].
Recording with DejaVu is not required to use iTrace-Visualize.
The participants are given a small part of iTrace-Toolkit’s
source code, and asked to read the function name in every .h
file and read through a random function of their choice in the
controller.cpp file. Participants are instructed to set up
OBS and iTrace-ScreenRecord during the recording as well.
After recording, participants are instructed to run the source
code through srcML, and then use iTrace-Toolkit to map tokens
and generate a set of fixations with every algorithm.

After gathering all the data and videos from the participants,
the first author ran each session through iTrace-Visualize. The
output videos are collected and watched through, and compared
to standard heatmap style images from the heat map studies
mentioned in Section II [7-9]. Table 1 details the sessions and
how long they took to process. For consistency, only fixations
calculated with the IDT algorithm [15] in iTrace-Toolkit are
displayed and counted.

Table 1: Sessions gathered and put through iTrace-Visualize. All
time values are in hh:mm:ss

Participant 1 2 3 4
# of Gazes 40519 30453 35766 78594
# of Fixations

(IDT) 254 211 1273 488

# of Mouse Scrolls 70 114 368 108
Session Time | 0:02:15 | 0:01:41 | 0:04:57 | 0:04:21

Proc. Time w/o 1. e 0. .50
Highlighting 0:31:24 | 0:22:46 | 0:30:44 0:59:40

Proc. Time w/ . an. 1. Rz
Highlighting 0:42:12 | 0:37:55 | 1:21:09 1:35:15

Participants 1, 2, and 4 used the Tobii Pro Spectrum eye-
tracker at 300Hz, while participant 3 used the Tobii Pro X3-120
eye-tracker at 120 Hz. Because participant 3 used a lower speed
tracker, they have significantly less gazes for the amount of
time recorded (around 5 mins). This also affects the number of
fixations, as participant 3’s gazes are less dense, causing more
to be registered. Despite this, participant 3 has similar number
of gazes as participants 1 and 2, and thus has a similar
processing time when not doing line highlighting. Participant 4,
has almost double the number of gazes and double the
processing time.

Line highlighting affects processing time differently.
Because the bounding boxes must be re-calculated when the
screen significantly shifts, things like scrolling the screen or
opening a context menu causes delays in processing. Participant
3 has the largest number of mouse scrolls, which results in the
largest difference in processing time when processing without
highlights compared to with highlights. This does not account
for every increase in processing time, as other things like
context menus and pop-ups also increase the time.

V. DISCUSSIONS

When comparing the two styles of visualizations, there is
not a lot of objective pros and cons that can be listed, as
preferences may be based on subjective choice. However,
iTrace-Visualize’s implementation does provide some
advtanages over the more traditional heatmap visualizations.
The biggest improvement is the ability to view the data over
time, and tell the order and duration of what a user looking at.
While heatmaps can showcase the progression of time, changes
in heatmaps take longer to update, as they are area based as
opposed to iTrace-Visualize’s point-based system. Heatmaps
also do not scale well with the differing speeds of eye-trackers
and different fixation algorithms. Because different numbers of
gazes can go into each fixation due to these factors, the
heatmaps do not consistenly grow for each session, and some
appear weaker. Additionally, iTrace-Visualize supports the
drawing of multiple kinds of data (saccades, raw gaze, and
fixations) that are not seen on heatmaps.

iTrace-Visualize will take a good chunk of time to process
a video as shown in Table 1. Even before the introduction of
the fading display and line highlighting, iTrace-Visualize must
draw markup on every single frame of a video, which at two



minutes and 60 fps is 7200 frames. Additionally, because of the
fading display, multiple data points must be drawn on each
frame. At 300Hz, roughly 300 gazes are drawn on each frame
at varying levels of transparency. The average time spent on
each frame is calculated in Table 2. For the 3 sessions recorded
at 300Hz, the average processing time without highlighting is
0.2283 seconds per frame. This is consistent regardless of video
length.

Table 2: Average processing time per frame in iTrace-Visualize. All
time values are in seconds.

Participant 1 2 3 4

Tracker Speed 300Hz 300Hz 120Hz 300Hz
# of frames 8101 6081 17861 15709

Proc. Time w/o
Highlight 1884 1366 1844 3580

Avg. Frame
Time w/o 0.2325 0.2246 0.1032 0.2278

Highlight

Proc. Time w/
Highlight 2532 2275 4869 5715

Avg. Frame
Time w/ 0.3125 0.3741 0.2726 0.3638

Highlight

% Increase in
Frame Time 134.3% 166.5% 264.0% 159.6%

When using highlighting, the scale is different. The percent
increase in frame processing time does not stay consistent due
to the number of bounding box calculations that must be
performed. Out of the three participants at 300Hz, participant 2
has the biggest percent increase, with 4 and 1 behind in order.
This matches with the number of mouse scrolls in Table 1. This
can also be seen with Participant 3, because despite having a
much lower eye-tracker speed, there is an enormous increase in
frame processing time due to the larger amount of bounding box
refreshes that had to be performed.

VI. CONCLUSIONS AND FUTURE WORK

iTrace-Visualize takes eye movement data from the iTrace
pipeline and marks up the data onto a video recording of an eye-
tracking session for other researchers to view and present their
data. This is helpful for researchers so they can visually analyze
their collected data for flaws and inconsistencies or compare
data in a human-perceivable way.

In the future, we plan to expand iTrace-Visualize by
expanding the type of markup iTrace-Visualize can support.
Mouse and keyboard information gathered from DejaVu [3] in
iTrace-Core can be displayed through small visual annotations
for keyboard presses and expanding/shrinking circles for mouse
clicks. When the iTrace infrastructure supports the calculation
of saccades, iTrace-Visualize will be updated to use those
instead of manually calculating them from fixations.
Highlighting will also be improved, with both line and token
highlighting being offered. Currently, highlighting will only
occur if a fixation occurs directly in the bounding box of a line.
However, highlighting should occur if the fixation is close to
the box as well, as the box will wrap the text to its pixel values,
which does not necessarily match the dimensions of the line.

Additionally, the processing speed for iTrace-Visualize will
be improved. When dealing with numerous lengthy studies, the
ability to generate a visualization of each session quickly is
important. Allowing iTrace-Visualize to process the video in
multiple threads will increase the speed. iTrace-Visualize can
also take advantage of the GPU of the machine, if present, to
drastically speed up the process. An open-source beta release
will be available on our website at https://www.i-trace.org.

REFERENCES

[1] Bonita Sharif and Jonathan 1. Maletic, “iTrace: Overcoming the
Limitations of Short Code Examples in Eye Tracking Experiments,”
presented at the 32nd IEEE International Conference on Software
Maintenance and Evolution (ICSME), Oct. 2016, pp. 647-647. doi:
10.1109/ICSME.2016.61.

[2] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“itrace: Eye tracking infrastructure for development environments,” in
Proceedings of the 2018 ACM Symposium on Eye Tracking Research &
Applications, ACM, 2018, p. 105.

[3] V. Zyrianov et al., “Deja Vu: semantics-aware recording and replay of
high-speed eye tracking and interaction data to support cognitive studies
of software engineering tasks—methodology and analyses,” Empir.
Sofiw. Eng., vol. 27, no. 7, p. 168, Dec. 2022, doi: 10.1007/s10664-022-
10209-3.

[4] J.Behler, P. Weston, D. T. Guarnera, B. Sharif, and J. I. Maletic, “iTrace-
Toolkit: A Pipeline for Analyzing Eye-Tracking Data of Software
Engineering Studies,” presented at the in the Proceedings of the 45th
IEEE/ACM International Conference on Software Engineering (ICSE)
Demonstrations Track, Melbourne, Australia, May 2023.

[5] M. L. Collard, M. J. Decker, and J. 1. Maletic, “Lightweight
Transformation and Fact Extraction with the sccML Toolkit,” in 2011
IEEE 11th International Working Conference on Source Code Analysis
and Manipulation, Sep. 2011, pp. 173—184. doi: 10.1109/SCAM.2011.19.

[6] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An Infrastructure
for the Exploration, Analysis, and Manipulation of Source Code: A Tool
Demonstration,” in 29th IEEE International Conference on Sofiware
Maintenance (ICSM), 2013, pp. 516-519. doi: 10.1109/ICSM.2013.85.

[7] O. Spakov and D. Miniotas, “Visualization of Eye Gaze Data using Heat
Maps,” Elektron. Ir Elektrotechnika, vol. 74 No. 2, pp. 55-58.

[8] P. A. Punde, M. E. Jadhav, and R. R. Manza, “A study of eye tracking
technology and its applications,” in 2017 st International Conference on
Intelligent Systems and Information Management (ICISIM), Oct. 2017,
pp. 86-90. doi: 10.1109/ICISIM.2017.8122153.

[9] T. Pfeiffer and C. Memili, “Model-based real-time visualization of
realistic three-dimensional heat maps for mobile eye tracking and eye
tracking in virtual reality,” in Proceedings of the Ninth Biennial ACM
Symposium on Eye Tracking Research & Applications,in ETRA *16. New
York, NY, USA: Association for Computing Machinery, Mar. 2016, pp.
95-102. doi: 10.1145/2857491.2857541.

[10] L. Zhang, J. Sun, C. Peterson, B. Sharif, and H. Yu, “Exploring Eye
Tracking Data on Source Code via Dual Space Analysis,” in 2019
Working Conference on Software Visualization (VISSOFT), Cleveland,
OH, USA: IEEE, Sep. 2019, pp. 67-717. doi:
10.1109/VISSOFT.2019.00016.

[11] B. Clark and B. Sharif, “iTraceVis: Visualizing Eye Movement Data
Within Eclipse,” in 2017 IEEE Working Conference on Sofiware
Visualization (VISSOFT), Shanghai, China: IEEE, Sep. 2017, pp. 22-32.
doi: 10.1109/VISSOFT.2017.30.

[12] “Qt for Python.” https://doc.qt.io/qtforpython-6/ (accessed Jun. 21,2023).

[13] “opencv-python PyPL”  https://pypi.org/project/opencv-python/
(accessed Jun. 21, 2023).

[14] “Open Broadcaster Software | OBS.” https://obsproject.com/ (accessed
Jun. 21, 2023).

[15] R. Andersson, L. Larsson, K. Holmqvist, M. Stridh, and M. Nystrom,
“One algorithm to rule them all? An evaluation and discussion of ten eye
movement event-detection algorithms,” Behav. Res. Methods, vol. 49, no.
2, pp. 616637, Apr. 2017, doi: 10.3758/513428-016-0738-9.



