ASSESSING PYTHON BINDINGS OF C LIBRARIES WITH RESPECT TO

PYTHON IDIOMATIC CONFORMANCE

A thesis submitted to
Kent State University in partial
fulfillment of the requirements for the

Degree of Master of Computer Science

by

Joshua Behler

December 2023
© Copyright
All rights reserved

Except for previously published materials

Thesis written by
Joshua Behler
B.S., Kent State University, 2021

M.S., Kent State University, 2023

Approved by

, Advisor

Jonathan Maletic

, Chair, Department of Computer Science

Javed I. Khan

, Dean, College of Arts and Sciences

Mandy Munro-Stasiuk

TABLE OF CONTENTS

TABLE OF CONTENTS ... 11
LIST OF FIGURES ... VI
ACKNOWLEDGEMENTS ... IX
CHAPTER 1 INTRODUCTION ..ot 1
1.1 IMOTIVALION ..ttt bbbt 2
1.2 Problem StAteMENTccooiiiiiiiii s 2
1.3 CONEIIDULIONS ... 2
1.4 Organization 0f the TNESISc.coiveiiiie i 3
CHAPTER 2 BACKGROUND AND RELATED WORKcocoiiiiiicceeeee 4
CHAPTER 3PYTHONIC BINDING IDIOMS. ..o 7
Bl THIOMIS . 10
31D HEFALION Lottt 11
3.1.2 ConteXt MANAGINGcoveivieiieeie ettt ste ettt sreene s 13
K J0 I T 0% 1 1] o SO SPUSRSTTPRN 14
314 Printability ...cc.ooeiiiece e 15
3.1.5 Mapping StruCts t0 CIaSSESccveivieiiiriccie et 16
3.1.6 Identifying Free FUNCLIONScooviiiiiiiiccic e 17
317 DBSIIUCTONS ...ttt 18
3.1.8 RAISING EITOIS....oiiiiiiii ettt 19
TR0 I T B To ot (] T 1P 20

3110 ANNOTALIONS ...ttt e e e e e e e et e e e e e e e e ee e eeeeaeens 21

3.1.11 Selective IMPOITINGccveieeieiieii et sra e 22
3.2 NaMING StANCAIAScocveeieiieie e na e sreereenee e 23
3.2.1 Classes and EXCEPLIONSccecueieeiieieiiesieeieseese e eesie e sreesae e snaene s 24
3.2.2 FUNCHIONS ...t 24
3.2.3 PAramMeLErSoooiiiiiiii 25
32,4 CONSTANTS ...t 25
CHAPTER 4 ASSESSING CURRENT BINDINGS ..o 26
4.1 Collecting Libraries and BiNAINGS..........cccooieiieieiiieiieie e 26
4.2 Analyzing Bindings for Presence of 1diomsccccceviviiiiiciicie s 28
4.2.1 Preparing the C Code With STCMLccoveiiiiiiiice e 28
4.2.2 Preparing the Python COae..........cccoveiiiiiiiicc e 29
4.2.3 Analyzing Name Data..........c.coeieeiieiieiiececce e 30
4.2.4 Identifying MagiCc FUNCLIONSccceeiviiieiicccc e 31
4.25 Analyzing FUNCLION STIUCLUIEccvveiiiieiece e 35
4.3 Analyzing Other MOAUIEScocouiiieiiee et 37
CHAPTER S RESULTS ...t 39
5.1 lteration, Destruction, and Context Mapping........cccccveveeieiiericiie s 40
5.2 Casting and Printabilityccooiiiiiiie e 42
5.3 Mapping Free and Member FUNCLIONScocveiiiiiiciie e 43
5.4 RaAISING EITOIS ..ttt e e et e e st e te e snee e 44
5.5 Docstrings and ANNOLALIONSc.eciieiiieiieiiieesie et see s 45
5.6 Naming StANAArdSccoveiiiiiie i 47

5.7 sqlite3, and bXmI2 VS IXMI......cooiiii e 48

CHAPTER 6 DESIGN AND IMPLEMENTATION OF PYLIBSRCML................. 50
CHAPTER 7 CONCLUSIONS AND FUTURE WORKccocoiiiiiiie e 53

T. 11 FULUIE WOTK .o 53
CHAPTER 8 REFERENCES oo 55

LIST OF FIGURES

Figure 3.1 An example of the with Python idiom (left) and functionally similar code that
d0ES NOL USE ML (FIGNT) .. 8

Figure 3.2 The open function of the Submodule class in the pygit2 module. Excess

indentation and comments removed fOr DIEVILYc.ccevvive i e 8
Figure 3.3 Examples of Python iterationcccccevveiieii i 12
Figure 3.4 An example implementation of context management in Python..................... 14
Figure 3.5 An example implementation and execution of boolean casting...................... 15

Figure 3.6 Examples of function signatures that would be attached to the customDoc
structure and their format in a Python bindingcccccccveviieiiccc e 17
Figure 3.7 Examples of free function signatures in Ccccccevviievieve e 18
Figure 3.8 An example of a single-line docstring on a function, given in PEP 257
[Goodger and van ROSSUM 2001]cceoieiieiiiiieiieeie et 21
Figure 3.9 An example of changing a function name from C (left) to Python (right). The
Python function is presumed to be inside a class Stack, which is why stack is
removed from the NAME. ... 25
Figure 4.1 An example of a Python class in a binding that properly implements the
TEEIALION TAIOM. ...t 32
Figure 4.2 An example of a Python class in a binding that properly implements the
context Managing IdiOMcoiiiiiiiie e 33
Figure 4.3 An example of a Python class in a binding that properly implements the

context Managing IdiOMcoiiiiiiiie e 34

Figure 4.4 A merging of Figures 4.2 and 4.3, showing a class that implements a

destructor that will also call the close FUNCLIONveeeeeeee e,

vii

LIST OF TABLES
Table 3.1 A general overview of the 11 new idioms proposedcccceeveevveviesiiennennnns 10

Table 4.1 A list of the C libraries and corresponding Python bindings analyzed in this

02 1 RO OURRTPR PRI 27
Table 5.1 Summaries of each binding’s idiomatic complianceccvcvviiiieiiieriiiinnns 39
Table 5.2 Iteration idiom compliance per Python bindingcccceovevviieiniicceiees 41
Table 5.3 Destructor idiom compliance per Python bindingcccccceeevvievviiciiieinenns 41
Table 5.4 Context Management idiom compliance per Python bindingc.cccceeu.. 42
Table 5.5 Casting and Printability idioms compliance per Python binding 43
Table 5.6 Structs to Classes and Free Function idioms compliance per binding 44
Table 5.7 Raising Errors idiom compliance per bindingcccooeiiiiiiicieiicccieee 45
Table 5.8 Docstring and Annotation idioms compliance per bindingccccceeeveveenne 46
Table 5.9 Naming Standard idiom compliance per bindingccccccveveiveviiie e 47
Table 5.10 Summary results of the analysis of sqlite3 and Ixmlcccccoeveiiiinennns 48
Table 6.1 Summary results of comparing the two different version of pylibsrcml 52

viii

ACKNOWLEDGEMENTS

| would like to thank my parents Brian and Elizabeth Behler and the rest of my
family for supporting me throughout my life, and always encouraging me to pursue my
goals and dreams.

I would like to thank my partner, Rebecca Turner, for her continual support of me
in both my professional and recreational endeavors, and for putting up with me every day.

| would like to thank my advisor, Dr. Jonathan Maletic, for providing me with such
wonderful opportunities to explore academia, travel the world, and achieve things like |
never have before, and also for being an extraordinary mentor. I’d also like to thank Dr.
Michael Collard and Dr. Michael Decker for their support, encouragement, and wisdom.

Lastly, I’d like to thank the members of my defense committee, Dr. Gregory
DeLozier, Dr. Mikhail Nesterenko, and Dr. Qiang Guan for taking time out of their busy

schedules to read this thesis and hear my defense.

Joshua Behler

November 3, 2023, Kent, Ohio

CHAPTER 1

Introduction

The work presented in this thesis examines the issues facing a subset of Python
modules — bindings of pre-existing C libraries. These modules differ from normal modules
in that they acquire most of their implementation through the underlying C code they call
and have little to no implementation added in the Python code. Because of this, they often
go through widely different developmental processes than other types of Python modules.
This development process is often automated, and results in cookie-cutter modules that end
up providing a complex and confusing API that goes against Python standards and is often
jarring to end users.

Since these bindings do not have much Python code, previously established
analysis tools are not sufficient to examine these modules. Analysis programs like linters
and debuggers, and more manual evaluation styles, struggle when aimed at these bindings,
and end users miss out on the useful information they normally have when using other
modules.

To address this, we define a set of idioms and standards focused on the
implementations of Python bindings of C libraries. These standards are used to not only
guide and improve development in becoming more end-user focused, but also to analyze

the current state of any bindings, and how “Pythonic” they are — meaning how much they
1

conform to Python and community standards and are written in a way that makes use of

Python features.

1.1 Motivation

While there are styling guidelines and community accepted idioms for writing
Python code, there are currently no common standards defined for writing a Python
module. This is especially noticeable when working with a Python binding of a C library,
as the binding will often adopt coding styles from C and ignore useful Python features.
Consequently, this causes any Python program that uses these modules to have a confusing,
non-consistent style and an increased complexity due to having to manually handle

memory in a language that does not usually allow for it.

1.2 Problem Statement

The goal of this thesis is to define a set of common Python idioms that can act as
standardized guidelines for creating Python bindings of C libraries. These idioms can then
be used to analyze the current state of any binding, and guide developers to improve or

develop more Pythonic bindings.

1.3 Contributions
This work provides three main contributions: 11 new Pythonic idioms, evaluation
of seven bindings with the idioms, and an updated, new version of the pylibsrcml module.
The 11 new idioms this thesis proposes are all defined around features needed most
by Python bindings of C libraries. They are all defined intricately, with information on how

to identify them and what they improve about the source code.

2

The 11 idioms are then used to evaluate seven different Python bindings that have
been developed for popular C libraries. The idiomatic compliance and how much the
binding adheres to Pythonic style is measured and compared. Additionally, the 11 idioms
are also applied to the pylibsrcml binding, through a detailed development process that

implements all the idioms into pylibsrcml.

1.4 Organization of the Thesis

The work is organized as follows: CHAPTER 2 includes background information
on Python idioms, Python standards, and how they have been used previously. CHAPTER
3 defines the 11 new Pythonic Binding idioms, as well as the naming standards deemed
relevant. CHAPTER 4 discusses the process used to analyze seven publicly available
Python bindings with the idioms, and CHAPTER 5 discusses the results found from these
analysis steps. CHAPTER 6 discusses how the idioms aided the updating of the pylibsrcml
module, and how it compares to the previous version. CHAPTER 7 discusses future work

and conclusions.

CHAPTER 2

Background and Related Work

Previous work done by Alexandru et al. gave a list of idioms that Python developers
tended to agree were Pythonic in nature [Alexandru 2018]. The idioms described in their
work detail what Python developers commonly consider to be good code and improve
factors such as performance and readability of the code. Code that meets these standards is
often called Pythonic, which their work also sought to define. Farooq and Zaytsev later
expanded on this work by identifying 25 new idioms [Farooq and Zaytsev 2021]. They also
note that due to the fast-evolving nature of Python, many idioms were previously ignored
or missed because of them not being popular at the time. The paper makes specific note of
the assignment expression operator (:=), also known as the walrus operator in Python,
which at the time of the second paper had only recently been implemented and was not
very common, but has since become much more widespread in modern Python code.

These idioms have inspired many different works and tools. Rldiom, a tool
developed by Zhang et al., is able to automatically refactor non-idiomatic code from nine
different idiomatic categories [Zhang 2023b]. Zhang et al. also analyzed the performance
effects that idioms have on code, allowing developers the ability to consider how effective

an idiom may be in certain situations [Zhang 2023a]. Work by Sakulniwat et al. visualized

the occurrence of the “with open” Python idiom over time, finding that usage of the idiom
has increased.

In addition to idioms, other coding guidelines are important for promoting higher
quality code. The Python Software Foundation maintains a set of style guides that they
promote to their users as a part of their Python Enhancement Proposals (PEP). These guides
aim to provide a standard to “improve the readability of code and make it consistent” [van
Rossum 2013]. These articles include, but are not limited to, topics from naming
conventions, stylistic formatting choices, and semantic choices for general situations. They
are also often updated to add new guidelines for new features when they are released.

Beyond Python’s official style guides, there are many public guides that also advise
on standardized Python formatting. Two popular ones are Google’s official Python Style
Guide [Google] and The Hitchhiker’s Guide to Python [Reitz]. These guides reference the
PEP guidelines often, but attempt to be wider in scope, and offer recommendations for
specific situations and coding practices.

There has been little documented work on how to effectively translate a C library
into a Python module. Many modules and programs exist that offer the ability to run C
code in Python, including the built-in ctypes module [Python Software Foundation 2023],
the Simplified Wrapper and Interface Generator program (SWIG) [SWIG 2022], and the
C Foreign Function Interface module (CFFI) [Rigo and Fijalkowski]. These modules
provide varying levels of automation in their bindings, with some requiring manually
wrapping the C code and others generating pre-compiled Python modules that wrap the C

code. However, these methods solely map C code directly to Python equivalents and lack

the ability to aggregate these features together to map to common features within Python.
There exists no comprehensive list of recommended practices for adapting these bindings
in a Pythonic way, and with each method providing a different interface, any one method

would require wildly different steps to turn them Pythonic

CHAPTER 3

Pythonic Binding Idioms

Idioms are an important step in defining good programming practices. In 1979,
Perlis and Rugaber stated that idioms are a vital step in the growth of style and structure of
a programming language [Perlis and Rugaber 1979]. Python is no exception to this
statement. As mentioned in Chapter 2, there is recent work done on identifying commonly
used Pythonic idioms. These idioms are defined for general programming, and aid with the
readability and performance of the source code. While these idioms are incredibly useful
for analyzing more general case Python code, they are less helpful when looking at Python
bindings. Because most, if not all, of the functionality of the module comes from the C
library the binding is wrapping, most of the Python code in a binding will be focused
around wrapping the C functions into Python functions and is often heavily obfuscated in
pre-compiled modules. This lack of readily available implementations means that most
bindings will have few or no idioms present.

For example, in Alexandru et al.’s work, one of the idioms defined is the with
statement [Alexandru 2018]. This idiom concerns Python’s context manager, which is used
to handle the automatic setup and teardown of certain resources in code. Commonly, this

is used for opening and closing files. An example is shown in Figure 3.1.

with open("file.txt",'r') as file: file = open("file.txt",'r")
. # Actions on file ... # Actions on file

file.close()

Figure 3.1 An example of the with Python idiom (left) and functionally similar code
that does not use it (right)

While a C library will often have structures that need to be opened and closed, there
IS no such context manager in C, meaning that an open and close function are necessary
for managing data. This results in a Python binding’s wrapping of said open and close
functions to only call the corresponding C function, which requires the end user to
manually call the open and close function. An example of an open function in Python is

shown in Figure 3.2.

def open(self):
crepo = ffi.new('git repository **')
err = C.git submodule open(crepo, self. subm)
check error (err)

return self. repo. from c(crepo[0], True)

Figure 3.2 The open function of the Submodule class in the pygit2 module. Excess
indentation and comments removed for brevity

Previously defined idioms are not sufficient to analyze how Pythonic a Python
binding is and help guide a developer to create a more Pythonic binding. To remedy this,

8

we define a set of 11 Pythonic binding idioms, which are based on previously defined
idioms, but are defined specifically for Python bindings of C code. Specifically, these
idioms are focused on describing what features a developer can implement and provide in
their module to allow an end user to make use of the more general idioms themselves.
These idioms are in general not concerned with the underlying C and Python
implementation of the functionality of the module, but rather how the module author
organizes and presents the functionality. Like the more generic bindings, these idioms help
improve both the readability and usability of a Python binding if implemented. Table 3.1

displays a brief overview of the 11 idioms.

Idiom

Description

Iteration

Implementation of the __iter __and/or __next__ magic functions

Context Managing

Implementation of the __enter__and __exit__ magic functions

Casting

Implementation of any of the casting magic functions

Printability

Implementations of the __str__and/or __repr__ magic functions

Mapping Structures

to Classes

Correctly mapping structures from C code to Classes in Python
code, along with mapping “attached” structure functions to class

member functions

Identifying Free

Functions

Correctly mapping non-“attached” C functions to free functions

in Python

Destructors

Implementation of the __del _ magic function

Raising Errors

Handling integer error codes from the C code as raised

Exceptions

Docstrings

The presence of docstrings on functions and classes

Annotations

The presence of annotations on functions and parameters

Selective Importing

Correctly obscuring values related to calling C within the Python

module

Table 3.1 A general overview of the 11 new idioms proposed

3.1 Idioms

The following section details the in-depth definition of each idiom, how we can

identify them, and some examples of how each idiom would look. The first four idioms are

based on idioms defined in previous works. The latter seven are all either based on features

of Python that are missed in previous literature or concerned solely with the mapping of C

code to Python code. Most of these relate to the switch from the procedural programming

paradigm of C to the object-oriented paradigm of Python.

10

3.1.1 Iteration

Iteration is Python’s ability to use an object directly as the range of a loop. This
idiom is based on Alexandru et al.’s previously defined idioms, “Generator expressions”,
“yields”, and “List and Dict Comprehensions” [Alexandru 2018].

In Python, there are two main ways to make use of iteration — the for loop statement
and comprehension. Both of these, which use the “for” keyword, differ from C’s for loop
implementation, as C uses the more common conditional and incrementation
implementation, while Python only provides a for-each implementation, requiring the

target of the loop to be some kind of iterable object.

11

for i in range (10):

for line in file:

args = [word for word in argv.split()]
class CustomRange:
def iter (self):
i=20
while 1 < 10:
yield i
i+=1

custom arr = [num for num in CustomRange ()]

Figure 3.3 Examples of Python iteration

To enable iteration of an object, the _iter function must be defined in the class.
__iter__ is one of the many magic functions in Python that allows for interfacing with
Python’s special syntax and features. The iter function is typically accompanied by
the __next__ function, but this is not always true and depends on a developer’s preference
for implementing iteration. The yield keyword is also an option for implementing iteration,
as they are indicative of a Python generator being used. Additionally, two other magic
functions, __contains__and __getitem__, can be used to implement indexing of the object.

We consider these methods important and valuable for implementation of iteration
12

alongside __iter__and _ next__, but do not require them be present for the Iteration idiom
as there is no prior evidence of them being idioms in previous work, and they are optional

for iteration to work.

3.1.2 Context Managing

Context managing is Python’s ability to manually handle the closing, freeing, or
general teardown of a resource. Context managing is briefly mentioned at the beginning of
Chapter 3, and an example of it is shown in Figure 3.1. As mentioned there, the Context
Managing idiom is based on Alexandru et al.’s with statement idiom [Alexandru 2018].

Context management is used for resources that need to be explicitly opened and
closed, most often on files. Using a context manager ensures that the close function will be
called when the resource is done, regardless of if an error or return occurs between the open
and close calls. In this regard, it is more practical and safer to use the context manager
instead of manually calling the close function.

To implement context management, two functions are defined in an object’s class,
__enter__and __exit . enter__is called at the top of the with statement, and __exit__
is called when the scope of the with statement is left. Implementing these functions in a
class will allow instances of that class to be used as the target within a with statement. An

example of context management being implemented can be seen in Figure 3.4.

13

class CustomFile:
def enter (self):
Call open
def exit (self, type, val, tb):

Call close

Figure 3.4 An example implementation of context management in Python

A common implementation of __enter _ will be a sole “return self” statement, as
most open or enter calls are performed during the instantiation of an object, and thus only

the close needs to be implemented in __exit_ .

3.1.3 Casting

In Python, the implementation of casting is done with numerous magic functions.
These magic functions allow for the casting of non-default types into default types. This is
useful for certain data structures that represent or hold values and offer an alternative way
to get these values instead of needing to access underlying attributes or define a specific
function to do so. While not explicitly defined in previous idioms lists, Alexandru et al.
defined three tiers of magic functions idioms, of which the casting functions lie mostly
within the “Simple” tier [Alexandru 2018].

The list of valid magic functions we consider for this idiomare: __int_, bool
str, float _, complex , index_, and _ bytes . By default, all Python

objects have a _str__ function defined with a baseline behavior. Because of this, _ str

14

only counts for this idiom if it has a custom implementation. When one of the magic
functions is implemented, they can be used by using the object as an argument in the

corresponding call. An example of this with __bool__is shown in Figure 3.5.

class Type:
def bool (self):
return True
a = Type()

bool value = bool(a)

Figure 3.5 An example implementation and execution of boolean casting

The __index__ function is an exception to this, as there is no index() call in Python.
Instead, implementing the __index__ function provides the ability to use the oct(), bin(),
and hex() functions, as well as allowing it to be used alongside the slicing operator while

indexing.

3.1.4 Printability

Printability is the ability of an object in Python to be used as an argument in the
built-in print function. Like Casting, Printability is defined entirely though magic
functions. The two magic functions important for printing are __ str__ and __repr__.

Having either __repr__ or __str__is enough to satisfy the requirements of this idiom. If

15

both _str _and _ repr__ are implemented, print will always prefer to call the _ str__
function.

As with Casting, _ str__ needs to be checked for custom implementation due to all
objects having a default __str__. This also means that if __str__is implemented, both the
Casting and Printability idioms are present. _ repr__ does not count for Casting, as
__repr__is meant for replicating the code used to instantiate the object.

Printability is a relatively minor feature that, while not vital, is still important to

help programmers trace errors they encounter and understand what their code is doing.

3.1.5 Mapping Structs to Classes

When wrapping a C library, any publicly available structures in the C code needs
to be represented in the Python version as a class. Along with the structure, any C functions
that are attached to the structure needs to be added as member functions of the class.

Because of C’s lack of classes, we must determine a way to rule whether a function
in C should be ported over as a free function or as a member function of a class. We define
a function as being attached to a structure if the first parameter of the function is typed to
the structure or a pointer of the structure. In general, C functions names will also indicate
the structure they are acting on. This is often a good indication of which structure the
function is attached to, but it is not a certainty, so checking the parameters is necessary.
Some examples of C function signatures that are attached to structures are shown in Figure

3.6.

16

int getDocTitle (customDoc¥*) ; class CustomDoc:
void closeDoc (customDoc*) ; def get title(self):
int replaceline (customDoc*,

int, char*); def close(self):

def replace line(self, num, text):

Figure 3.6 Examples of function signatures that would be attached to the customDoc
structure and their format in a Python binding

In general, a developer only ever maps C functions to a Python class if they are of
the same data type, e.g., a function attached to the foo structure cannot be added to the bar

class in the Python binding.

3.1.6 ldentifying Free Functions

Following the standards for mapping functions that are attached to structs to classes,
functions that are not attached to any structures must remain free in the binding. The
parameters of these functions are most often built-in types, typedefs of built-in types, or it
has no parameters. Some examples of free functions in C are shown in Figure 3.7.

Some free functions may be suited best as static class methods instead of truly free
functions, such as a factory function that only constructs and returns a new instance of a

structure. For the purposes of this idiom, static class methods also count as free functions.

17

char* stripSpaces (char*);

pnglmage* openlmage (char*);

Figure 3.7 Examples of free function signatures in C

3.1.7 Destructors

When programming in native Python, there is very little emphasis on manually
managing the allocation and destruction of memory. All of Python’s variables are
references, and one may only use pass-by-reference when calling functions. While Python
provides a delete statement, this statement is mostly used to remove variable identifiers
from a namespace or remove elements from a collection.

To make a Python binding adhere to these practices and avoid memory leaks, any
structure from the C code that has any form of a memory freeing function attached to it
must be implemented as the __del _ magic function on the Python class. The _del
function is called when an object becomes out of scope or there are no more valid identifiers
that reference the object, including use of the delete statement. Attaching the freeing
function to the class in this way ensures that an end user will not need to manually free an
object by calling the C function and can instead let Python handle the freeing as needed. It
is important to note that Python does not guarantee any order of deletion, so extra work
must be put into implementing the __del__ function so that objects that depend on others
are freed correctly. Similar to how the Context Manager automatically handles the closing

of an object, the __del__ function must be able to close an object that is open before being

18

freed. This results in __del __ functions often calling multiple C functions conditionally
based on the state of the object.

Because of C’s more manual approach to handling memory, there are no syntactical
rules for defining a memory freeing function. This means there is no concrete way to
identify these functions in C solely through syntax. A common standard when creating
these functions is to name them “freeFoo” or “fooFree”, where foo is the name of the
structure that the function will free. Manual identification of these functions is required

when writing a binding and identifying this idiom.

3.1.8 Raising Errors

Python implements the ability to raise exceptions during runtime through the use
of exception classes, as opposed to C’s semantic implementation of integer error codes.
When implementing C functions into a Python binding, any error codes need to be
manually checked, and if the error code indicates an error, a corresponding exception must
be raised. No function on the Python side can return an error code, which allows a Python
programmer to make use of try statements to manage errors gracefully.

Because the C library will still be returning the error codes, it is still important to
recognize the error codes within the binding itself, but an end user has no reason to use
them. These error codes can be implemented as a list of global values, or as a custom
enumeration class with entries for each error code. Similarly, exceptions can either be
generalized to one main exception class that can give different error reasons, or multiple

specialized exceptions for each error code.

19

To raise these exceptions, a simple global function can be created that checks any
error code returned from a C function, and if an error is found, raise the corresponding
exception. Assuming this function is also hidden from an end user, this type of function is

sufficient to obstruct error codes from being returned to a user.

3.1.9 Docstrings

Python provides the ability to decorate functions and classes with a string placed as
the very first statement within the block of the function or class. These strings serve a
similar purpose to documentation comments — but unlike comments, they are parsed and
attached to the function or class they are within. To read a docstring, access the __doc__
attribute of the class or function. If __doc__ returns None, there is no docstring attached to
the object. This allows both an end user to read the information on a class or function
without having to read the source code or access online documentation, as well as allowing
automatic programs or linters to collect this information.

PEP 257 defines a set of style rules for docstrings [Goodger and van Rossum 2001].
These styling rules include how to format single or multi-line docstrings, how to indent
them, and what information should generally be included. If any documentation comments
exist in the base C code, it is permissible to copy the comment and use it as the docstring,
but care must be taken to change any information that would shift, such as the type or order
of parameters, return values, and function names.

While maintaining good, clear, and stylistically consistent docstrings are important,
for the purposes of defining this idiom we only look for the presence of a docstring, not the

content or format of the docstring itself. Figure 3.8 shows an example of a docstring.
20

def kos root():
"""Return the pathname of the KOS root directory.”"""
global kos root

if kos root: return kos root

Figure 3.8 An example of a single-line docstring on a function, given in PEP 257
[Goodger and van Rossum 2001]

3.1.10 Annotations

Like docstrings, annotations are a way to embed information within Python source
code to provide meaningful information to an end user. Also known as type hints,
annotations are a way to specify typing information on functions, parameters, and
variables. Annotations do not affect the code — a parameter of type string can still be passed
an integer value, but they provide a way of indicating to a user what the function is
expecting. It is important to note that annotations are not limited solely to names of types,
and can contain any valid expression including numbers, strings, ternaries, and even
lambdas. This grants flexibility to a programmer to define exactly what they would like to
label their function or parameter with.

Annotations are accessible through the _ annotations__ attribute on a function.

This attribute returns a dictionary of parameter names to the type hint, along with a special

21

return entry for the function return type hint. Annotations on variables are undetectable
outside of the original source code file and are ignored for this idiom.

In general, annotations can be taken directly from the C function’s signature, with
adjustments like changing char* to be str or bytes. However, if a Python function is
implemented in a way that it could accept different types, then an appropriate union of
types must be specified.

Like docstrings, a PEP style guide also exists for annotations. PEP 484 defines
stylistic and contextual guidelines for how to format and what to include inside your
annotations [van Rossum 2015]. For our purposes, only the presence of annotations is

valued, and the style or content of the annotation is ignored.

3.1.11 Selective Importing

When making a module, it is common to group related classes, functions, and
values into separate files for clearer coding. These files can be brought together through
the use of import statements. However, it is important to be thoughtful when defining what
is available to a user. At the top level of the module, there is an __init__.py file which is
run when a user imports the module. This file is often designed to import things from other
files within the module’s source code to aggregate them all in one place. Anything available
within the __init__.py will be available to the user initiating the import.

Python provides two main ways to control what is present within a file. The first is
the ability to selectively import. Instead of writing “import module”, a developer can write
“from module import object”. One or multiple objects can be specified, allowing for only

specified things to be imported. This only works when there are a limited number of things
22

that need imported, and if multiple things need to be imported the import list could grow
very long. The second method addresses this issue — instead of importing selective things,
“from module import *” can be used to import everything within a file, and then one or
multiple delete statements can be used to remove unwanted objects.

These processes work well for top level modules, but they do not apply to
controlling things that are available within classes. Python does not implement a way to
specify protected or private members of a class, so it is impossible to completely hide things
inside of classes. To remedy this, Python’s style guide specifies the use of a single leading
underscore in a name to mark the values or functions as “private” [van Rossum 2013]. This
standard also works for top-level module importing as well, as any name that begins with
an underscore is ignored when running “from module import *”

These rules can be leveraged carefully, to ensure that an end user does not gain
access to the underlying C library without a concerted effort and being aware of how the

binding is structured and functions.

3.2 Naming Standards

In addition to the above idioms, an important part of writing Pythonic code is
adhering to Python’s standards of coding style. The PEP 8 article details an exhaustive list
of how to properly style and format Python code [van Rossum 2013]. For our purposes,
the naming standards are important for determining if a Python binding provides a Pythonic
interface.

In this work, we refer to many different name formatting cases. The cases we use

are defined here:
23

e camelCase: Every word after the first starts with an uppercase letter.
e PascalCase: The first letter of each compound word is capitalized. All letters
of abbreviations must also be capitalized.
e snake case: All letters within the name must be lowercase, and words
separated by an underscore.
e UPPER_SNAKE_CASE: Like snake case, but all letters must be
uppercase.
When analyzing the Python binding, we evaluate the names of classes, exceptions,
functions, parameters (when available), and constants. Things that we are unable to analyze
without parsing the original source code, such as local variable names, are left untouched,

as a normal developer would not normally interact with them.

3.2.1 Classes and Exceptions

Classes and exceptions must follow the PascalCase convention. Primitive built-in
types make use of single-word lowercase names, but all other types must follow the
PascalCase rule. Exceptions can be made for the use of camelCase names if a word in the
name is commonly stylized to start with a lowercase letter. Class names must be kept as
close as possible to the original C structure name while conforming to new style rules, such

as changing the name “databaseConnection” in C to “DatabaseConnection” in Python.

3.2.2 Functions
Functions and methods must follow the snake case convention. Function names

are discouraged from mentioning the class or type they act on if they are a part of a class.

24

Like classes, function names must be as close as possible to the C name. An example of

this is shown in Figure 3.9.

void stackClear (stack* st); def clear(self):

Figure 3.9 An example of changing a function name from C (left) to Python (right).
The Python function is presumed to be inside a class Stack, which is why stack is
removed from the name.

3.2.3 Parameters
Like functions, parameters must always follow the snake_case pattern. In addition
to this, special rules for parameters in certain situations are defined in the PEP 8 Style
guide:
e The first parameter of an instance method is “self.”
e The first parameter of a class method is “cls.”
e The second parameter of defined binary operator implementations is

“other.”

3.2.4 Constants
Constants must follow the UPPERCASE_UNDERSCORES convention. This
includes constants located inside of enumeration classes as well as global constants defined

at the top of a file.

25

CHAPTER 4

Assessing Current Bindings

The Pythonic Binding Idioms defined above can be used to both help guide
developers when creating Python bindings and evaluate the state of existing Python
bindings. To highlight the contributions and effectiveness of these idioms, we detail the
processes of using these idioms for both purposes. This and the following chapter detail
our efforts to analyze how Pythonic current Python bindings of C libraries are through a
pilot study of seven currently available bindings, alongside two additional Python modules
for comparison. Chapter 5 details the evolution and development of pylibsrcml, a Python

binding of the libsrcml library, using these idioms.

4.1 Collecting Libraries and Bindings

To assess how Pythonic current bindings are, a process for collecting bindings
needs to be established. Our process starts with the identification of candidate C libraries
to use. Using GitHub’s advanced search features, we query for the most popular C code
repositories that contained the phrase “lib” or “library”. After identifying candidate
libraries, the other repositories within the same network of the library are searched for any
mention of a Pythonic wrapper or binding. In some cases, the binding is located within the

main repository of the library in a sub-directory, while others are in separate repos. This

26

process is entirely manual and is not automated. We considered allowing unofficial
bindings but decided to limit our analysis to official bindings only for simplification of our
inputs, as well as leveling the field for comparison. The seven libraries gathered are

detailed in Table 4.1.

C Library Name | Python Binding Name
libharu pyharu

libvirt libvirt

libvmi libvmi

libvips pyvips

libgit2 pygit2

libxml2 libxmlI2

libsodium libnacl

Table 4.1 A list of the C libraries and corresponding Python bindings analyzed in
this paper

Source code for the C libraries is downloaded and saved, while the Python binding
modules are installed through The Python Package Index if available, and through
directions on their GitHub repository if not. The Python bindings are tested to see if they
can be imported by opening the Python’s Integrated Development Environment and

importing each library, but functionality of the library is not tested beyond this.

27

4.2 Analyzing Bindings for Presence of Idioms
After all the libraries and bindings are downloaded and installed, the code needs to
be prepped for analysis and then actually analyzed. Each idiom requires a different set of

preparation and analysis steps, each of which is detailed separately below.

4.2.1 Preparing the C Code with srcML

Before the idioms can be applied to the Python bindings, a list of function names,
return types, parameters, and structure names needs to be collected for idioms that require
looking at the C code for verification.

To start, the C Libraries are scanned for their include files. These are the header
files that define what is made available when including a library in a C program. These
header files are run through the srcML program to prepare it for analysis. srcML
(www.srcML..org) is a program and an XML format that marks up the abstract syntax tree
of source code while also maintaining the original code without losing textual information
[Collard et al. 2013; Collard et al. 2011]. srcML allows for the easy use of normal XML
tools to extract and process information, making it simple for us to use to gather
information. Putting the header files through srcML allowed us to easily extract
information about the structures, functions, and constants without needing to manually
pour through online documentation or source code. To extract names and other
information, an additional tool in the srcML Infrastructure is used: nameCollector.
nameCollector is a tool that utilizes a custom SAX parser to collect every user-defined
name within a srcML archive file. This tool is used to easily gather a list of names of all

functions and structures within a library to easily compare to Python names. nameCollector
28

http://www.srcml.org/

also provides the file location of a name, which is helpful for the analysis of parameters
and return types by simplifying the process of finding the full function signature. Each
library is run through srcML and then nameCollector, whose output is then saved to a

comma-separated value file.

4.2.2 Preparing the Python Code
Unlike with the C code, srcML does not currently support the markup of Python.
This means that analysis on the Python code must be performed through pre-existing
Python analysis tools or through manual code scanning. To gather a list of relevant Python
data, a small script is created which, when given the name of a module, imports the module
and uses the built-in dir function to recursively traverse the publicly available modules,
functions, and classes from the binding. The script then saves the following information to
a JSON file:
e The names of any classes
e The names of any member functions and class attributes
e The names of any free functions
e The names of any top-level constants, as well as any class constants
e The names of any sub-modules within the top module
Each Python binding is put through this process and the resulting JSON file is saved

for later processing.

29

4.2.3 Analyzing Name Data

After gathering all the Python names, they are categorized on whether they abide
by the rules set in the PEP 8 naming standards. The quality of the names is not assessed —
we solely want to analyze whether the style of the names fits within Python standards.

To check each name, a set of algorithmic rules are used for each name category as
follows:

e Classes:
o The name must begin with an uppercase letter, except in special
cases of common abbreviations.
o No underscores can be present within the name.
e Functions and Parameters:
o The name must not contain any uppercase letters.
o Words must be separated by underscores.
e Constants:
o The name must not contain any lowercase letters.
o Words must be separated by underscores.

If a given name passed all checks related to its category, then it is labeled as being
within style guidelines. If it violates any rule, it is deemed as outside style guidelines, and
counted against the binding being Pythonic. Because the Python source code is not
analyzed when evaluating names, only parameters on functions with annotations are

evaluated. Details on this are noted in Chapter 5.

30

4.2.4 ldentifying Magic Functions

For the idioms that require the presence of one or multiple magic functions within
the code, each requires an individual process for identification. This applies to five of the
idioms: iteration, context managing, destructors, casting, and printability. For all the
idioms, the presence of the magic function is determined by checking whether the magic
function’s name is present within the return of the dir function call on each class.
Afterwords, additional checks must be made per idiom type.

For iteration, identification of the __iter or _ next functions automatically
counted the class as having the idiom. However, if the class does not have either function,
we must determine if the class should have implemented the idiom by checking the original
C source code. All C library functions that are attached to the corresponding structure are
analyzed for the presence of a function that implies iteration, looping, or being a container.
Function names that contain phrases like “next”, “prev”, and “iter” count for our
requirements. Any Python class that has a corresponding iteration C function but does not
have the __iter __or __next__ magic functions implemented, count against how Pythonic
the binding Pythonic. Those that lack both are simply ignored as being not relevant to the
idiom. Figure 4.1 showcases an example of a Python class that implements the iteration

idiom.

31

char* getNextLineFromFile (customDoc*) ;

int getNumberOfLines (customDoc*) ;

class CustomDoc:

def init (self):

def iter (self):
for i in range(c_lib.getNumberOfLines (self.c ptr):

yield ¢ lib.getNextLineFromFile (self.c ptr)

Figure 4.1 An example of a Python class in a binding that properly implements the
iteration idiom.

To identify context mapping, both the __enter_ and __exit magic functions
must be defined. Like iteration, if both the functions are present, we consider the idiom to
be present. If the functions are not, we need to verify that the class/structure does not fit
the idiom. All the C functions attached to the class are scanned through again, this time
looking for phrases like “open”, “close”, “enter”, or “exit”. If any of these are present, the
class should have the idiom, and is counted as so. Figure 4.2 shows an example of a

properly implemented context manager.

32

int openDoc (customDoc¥*) ;

int closeDoc (customDoc*) ;

class CustomDoc:

def init (self):

c lib.openDoc (self.c ptr)
def enter (self):

pass # Do nothing, open called in init
def exit (self):

c lib.closeDoc(self.c ptr)

Figure 4.2 An example of a Python class in a binding that properly implements the
context managing idiom

Like the previous two idioms, identifying the presence of a destructor is dependent
on finding a magic function and verifying the presence of a corresponding function in the
C library. For destructors, the magic function that must be identified is the _ del
function. On the C side, any function with the phrase “free” or “delete” is sufficient to

count. An example of a properly implemented destructor can be seen in Figure 4.3.

33

int freeDoc (customDoc*) ;

class CustomDoc:

def init (self):

def del (self) :

c lib.freeDoc (self.c ptr)

Figure 4.3 An example of a Python class in a binding that properly implements the
context managing idiom

When implementing a class that needs both context management and a destructor,
the destructor must be implemented so that if the object is deleted before being closed, the

close call is still made. Figure 4.4 shows an example of this.

class CustomDoc:

def init (self):

c lib.openDoc (self.c ptr)
def del (self):
if self.is open():
c lib.closeDoc(self.c ptr)

c lib.freeDoc (self.c ptr)

. # _enter , exit , and is_open

Figure 4.4 A merging of Figures 4.2 and 4.3, showing a class that implements a
destructor that will also call the close function

34

Unlike the previous three idioms, analyzing attached C functions is unnecessary to
prove whether an idiom applies to casting and printability. By default, all classes in Python
are encouraged to be printable in some form, which also means that all classes in Python
must be castable (to a string at minimum). Therefore, all that needs to be checked is whether
the _ str__ magic function is implemented. However, this check is more in-depth than
checking the other magic functions, as all Python objects are given a default _ str
function that returns a string of the object’s memory location. To verify __ str has custom
implementation, when checking the return of dir on the class, __str__ must not be of type
“slot wrapper”, which is what the default method is. Any deviance from this type implies
a custom implementation and counts for both the casting and printability idioms.

Despite __str__ being the only magic function that would ideally require being
checked for casting, because not all developers would have implemented printing, the other
casting magic functions are also looked for and considered for the casting idiom. No
additional checks for custom implementation need to be performed on these additional

casting magic functions.

4.2.5 Analyzing Function Structure

For the remainder of the idioms, more in-depth analysis on the underlying C and
Python code must be performed, making automation a difficult task. These idioms all go
through a manual verification process.

As mentioned in Chapter 3, we consider a C function to be “attached” to a structure
if the function’s first parameter is typed to the structure. For our purposes, we consider this

to be identical to the function being a member function of the structure. This classification
35

is necessary due to the programming paradigm difference between C and Python, C being
procedural and Python being object oriented.

For these idioms, we must verify that any function implemented in the Python
binding has been properly mapped over as a member function or as a free function
depending on its signature in C. To accomplish this, the code of each Python function is
manually examined, and any call to a C function and the Python function that made the call
is recorded. For each C function call found in each Python function, the C function’s
signature is analyzed. For free functions, the corresponding C function’s signature must
not indicate attachment to a structure to remain in compliance. For member functions, the
C function needs to be attached to a structure, and it needs to be attached to the same
structure that the Python class is binding. Any deviation from this result in a loss of
compliance.

Most functions are identifiable through this method — however, some Python
modules contain pre-compiled functions, whose code is not viewable. In these cases, an
educated guess is made to which C functions they call. These functions are then analyzed
in the same way. For functions that have viewable source code, but make no calls to C
functions, or call other functions that called C, we ignore them for idiom checking,
considering them out of scope of the binding and idioms.

Checking for the presence of error handling also requires checking both the C and
Python code. Using the function associations defined when checking free/member
functions, the C functions’ return types and documentations are manually reviewed. If the

C function is determined to return an error code or some other error value, the Python

36

function is reviewed to see if this error code is captured and analyzed to raise an error or is
ignored and passed through the call. Python functions that handled the error in some way,
either by passing the error code to a specialized function that solely raises errors, or by
doing in-place handling, are counted as being in-compliance with the idiom.

For docstrings and annotations, analyzing the C code is not required. Instead, only
the dir function is used. For classes, the presence of the __doc__ attribute is checked for.
If the value is None, or is an empty string, the idiom check fails. Otherwise, we consider
the idiom as present. For functions, the same check for __doc__is performed, alongside a
check for _ annotations_ . If _ annotations _ is present, we save the annotation
information for use in checking parameter names. For both docstrings and annotations, the
content of either is not taken into consideration for evaluating the presence of the idiom.
We considered comparing whether the docstrings of functions matched with any
documentation comments on the C function but decided against this due to documentation
and requirements changing drastically when moving to Python.

Lastly, to check whether a binding has used selective importing to control what is
available to an end user, is dir function is again used. We manually examined all that is
brought over on a fresh import and browse for any indication of variables, functions, or
sub-modules that provide direct access to C level values. If none are present, the binding

passes the idiom check. Otherwise, it is counted against the module.

4.3 Analyzing Other Modules
Along with the seven bindings, two additional modules are analyzed. These

modules, the built-in sglite3 module, and the alternative XML parser module Ixml, are put
37

through the same analysis process to catalogue what commonly considered Pythonic
libraries produce and compare them to the seven main bindings we focus on. Both
additional modules are also bindings of C libraries, the sqlite3 and libxml2 libraries

respectively.

38

CHAPTER 5

Results

The results of analyzing compliance of idioms across all seven bindings are saved
to individual spreadsheets for each binding, and then conglomerated here per idiom. Table
5.1 displays the summary information of total compliance for all the bindings, while Tables

5.2 through 5.9 showcase compliance per-idiom, per-binding.

Module Functions Classes Total
Partial Full Partial Full Compliance
pyharu 1/66 0/66 N/A N/A 19.42%
libvirt 490/ 490 21490 14715 0/15 55.62%
libvmi 113/113 0/113 5/5 0/5 44.86%
pyvips 193/193 0/193 59/59 1/59 49.95%
pygit2 292/292 | 2/292 67 /67 2167 66.41%
libxml2 181771869 | 0/1869 31/43 0/43 49.09%
libnacl 67 /67 0/67 1/1 0/1 76.24%
Total 297373090 | 4/3090 17771190 3/190 53.21%

Table 5.1 Summaries of each binding’s idiomatic compliance

39

Table 5.1 is separated into 3 sections, Functions, Classes, and Total Compliance.
For the Functions and Classes sections, two columns, Partial and Full, display ratios of
compliance of each binding. The partial column shows the ratio of functions or classes
within the binding that use at least one idiom to all functions/classes within the binding.
The full column shows the ratio of functions/classes that use all applicable idioms to all
functions/classes. The total compliance column shows the average compliance percentage
for all idioms on each binding. The individual percentages for each average can be found

in Tables 5.2 through 5.9.

5.1 Iteration, Destruction, and Context Mapping

Tables 5.1 through 5.3 showcase the compliance of the Iteration, Destruction, and
Context Mapping idioms. Results are greatly dependent on the binding that is being
analyzed. lteration is rarely found to be needed per module, but when it is needed it is
generally accounted for and included in the binding. Destructors are expectedly needed
quite often but are not always implemented. This does not necessarily mean that any
module that lacks compliance with the Destructor idiom will be subjected to memory
issues, but this memory management is likely done in a way that adheres to C standards
more than Python ones. Context management is mostly handled when needed, which is not
often. A notable outlier, libxml2, has five classes that could use a context manager, but
does not implement them. Like with destructors, this does not necessarily mean that

libxmI2 never closes their resources, but that the closing is handled in a C-like fashion.

40

Module | # of classes | # of Iterators | # of classes that | % compliance
implemented | need lterators

oyharu | O N/A N/A N/A

libvirt 15 0 0 N/A

libvmi 3 0 0 N/A

oyvips | 1 0 0 N/A

pygit2 45 5 8 62.5%

libxml2 | 25 3 4 75.0%

libnacl 0 N/A N/A N/A

Total | 99 8 12 75.0%

Table 5.2 Iteration idiom compliance per Python binding

Module # of classes # of # of classes | % compliance
Destructors that need
implemented Destructors
pyharu 0 N/A N/A N/A
libvirt 15 13 14 92.9%
libvmi 3 0 0 N/A
pyvips 11 0 0 N/A
pygit2 45 9 28 32.1%
libxml2 25 14 20 70.0%
libnacl 0 N/A N/A N/A
Total 99 36 62 58.1%

Table 5.3 Destructor idiom compliance per Python binding

41

Module | # of classes | # of Context | # of classes that need | % compliance
Managers Context Managers
implemented
pyharu |0 0 0 N/A
libvirt 15 1 1 100%
libvmi 3 0 0 N/A
pyvips 11 0 1 0%
pygit2 | 45 1 1 100%
libxml2 | 25 0 5 0%
libnacl |0 0 0 N/A
Total 99 2 8 25%

Table 5.4 Context Management idiom compliance per Python binding

The pyharu and libnacl libraries are notable in that they do not implement any
classes in their binding. Consequently, this means that any idiom that involves classes does

not apply to them. The bindings’ lack of classes is discussed in more depth in the Free and

Member Functions section.

5.2 Casting and Printability

Printability and casting are mostly ignored in the bindings, with only one binding
breaking 50% compliance. The number of printable classes matched identically with the

number of castable classes, meaning that all classes that implemented casting likely only

implemented string casting. Table 5.5 displays the results of these two idioms.

42

Module # of classes # Castable # Printable # Both
pyharu 0 N/A N/A N/A
libvirt 15 0 (0%) 0 (0%) 0 (0%)
libvmi 3 0 (0%) 0 (0%) 0 (0%)
pyvips 11 1(9.1%) 1(9.1%) 1(9.1%)
pygit2 45 3 (6.7%) 3 (6.7%) 3 (6.7%)
libxml2 25 13 (52.0%) 13 (52.0%) 13 (52.0%)
libnacl 0 N/A N/A N/A
Total 99 17 (17.2%) 17 (17.2%) 17 (17.2%)

Table 5.5 Casting and Printability idioms compliance per Python binding

5.3 Mapping Free and Member Functions

Table 5.6 is broken into two main parts, the free functions and the member
functions. For free functions, the first column lists only the number of free functions that
have some form of C function call. Any free function that has no call, or is too obfuscated
to tell, is ignored. The second column lists how many of those free functions have
corresponding C functions that are not attached to a struct. Save for one outlier, the libraries
prove very adept at mapping free functions from C to free functions in Python. pyharu and
libnacl are notable, as they both only implement free functions and have no member
functions. However, where they differ is in their accuracy. libnacl has 100% accuracy with
its 66 free functions, while all of pyharu’s 64 free functions are attached to some form of
struct on the C side.

For member functions, the bindings are less consistent and changed depending on

the binding being analyzed, but all maintained accuracy above 40%. Like the free
43

functions, the left column of the Member Functions category is the count of member
functions that call any C function, with functions that do not or cannot be determined being
ignored. The right column is the number of member functions that are correctly mapped to
C functions that are attached to the corresponding structure. Member functions that call C

functions which are attached to different structures are not counted as being correct.

Free Functions Member Functions

Module # of free | # of correctly mapped | # of member | # of correctly mapped

functions free functions functions member functions
pyharu | 64 0 (0%) 0 N/A
libvirt 19 19 (100%) 419 418 (99.8%)
libvmi 0 N/A 108 106 (98.1%)
pyvips 21 20 (95.2%) 23 10 (43.5%)
pygit2 12 12 (100%) 161 101 (62.7%)
libxml2 | 351 327 (93.2%) 538 238 (44.2%)
libnacl 66 66 (100%) 0 N/A
Total 533 453(85.0%) 1249 873 (69.9%)

Table 5.6 Structs to Classes and Free Function idioms compliance per binding

5.4 Raising Errors

Table 5.7 shows the compliance of functions within each binding that handle any
error codes that are passed to them from the C Library. Results are mixed, with some
developers being more aware of encapsulating these errors than others. Implementations
of error handling also varied — some use a generic “check error”-like function to capture

any error codes and return an error if one occurred. Others do an in-place check and raise

44

an error inside the same function. Generally, libraries with a wide spread of error codes

implement generic checking functions, while ones with few raise them in-place.

of C Functions that | # of Python functions
Module .
return Error codes that raise errors

pyharu 59 0 (0%)
libvirt 155 153 (98.7%)
libvmi 78 76 (97.4%)
pyvips 0 N/A
pygit2 137 131 (99.2%)
libxml2 738 213 (28.9%)
libnacl 66 66 (100%)
Total 1233 639 (51.8%)

Table 5.7 Raising Errors idiom compliance per binding

5.5 Docstrings and Annotations

For docstrings and annotations, all classes and functions within the binding are
analyzed, not just ones that are mapped from the original C code. Table 5.8 displays the
compliance of all classes and functions having docstrings and annotations per binding. The
bindings tended to have high percentages of function docstrings, likely due to the

abundance of documentation comments within the C source code that can be mapped over.

45

For classes, it is roughly a coin toss on whether a class has a docstring to go with it, and of
the ones that do, it is likely that most are copied documentation comments from the C code.

Annotations are virtually non-existent. Out of over 3000 functions analyzed, only
83 have annotations. The binding that has the highest compliance on annotations is libvirt,
with a paltry 66 out of 490 functions annotated. While we do not analyze the contents of

these annotations, it is likely that the only functions that are properly annotated are pure-

Python helper functions that do not perform any C calls.

Module #ofall | #of CI_ass # of gll # of Fun_ction # of Func_tion
Classes | Docstrings | Functions | Docstrings Annotations

pyharu |0 N/A 66 0 (0%) 0 (0%)

libvirt | 15 0 (0%) 490 464 (94.7%) | 66 (14.2%)

libvmi |5 1(20.0%) | 113 2 (1.8%) 0 (0%)

pyvips | 59 57 (96.6%) | 193 185 (95.9%) | 0 (0%)

pygit2 | 67 45 (67.2%) | 292 259 (88.7%) | 17 (5.8%)

libxml2 | 43 1 (2.3%) 1869 1646 (88.1%) | 0 (0%)

libnacl |1 1 (100%) 67 65 (97.0%) 0 (0%)

Total 190 105 (55.3%) | 3090 2621 (84.8%) | 83 (2.6%)

Table 5.8 Docstring and Annotation idioms compliance per binding

46

5.6 Naming Standards

Like most of the previous results found, adherence to PEP 8’s naming standards is
mixed and appears to be dependent per binding. Constants showed a higher average
adherence percentage than functions and classes, likely due to the similar naming standards
between the two languages for constants. We do not evaluate parameters, due to the
inability to access them through standard Python tools when obfuscated, the lack of

available annotations for over 97% of functions, and the fact that only two out of 7 bindings

implement them.

Ratio of Class Ratio of Function Ratio of Constant

Module
Names Names Names

pyharu | N/A 1/66 (1.5%) 645 / 664 (97.1%)
libvirt 0/15 (0%) 115/ 490 (23.5%) 1168 /1177 (99.2%)
libvmi | 5/5 (100%) 113/ 113 (100%) 51716 (31.3%)
pyvips | 59 /59 (100%) 193/ 193 (100%) 0/11 (0%)
pygit2 | 67 /67 (100%) 291 /292 (99.7%) 255 / 259 (98.5%)
libxml2 | 9/43 (20.9%) 216 /1869 (11.6%) 1251 /1251 (100%)
libnacl | 1/1 (100%) 67 /67 (100%) 9/70 (12.9%)
Total 141 /190 (74.2%) 996 / 3090 (32.2%) 3333 /3448 (96.7%)

Table 5.9 Naming Standard idiom compliance per binding

47

5.7 sqlite3, and libxmlI2 VS Ixml
As mentioned in Chapter 4, two additional modules are analyzed using the same

process as the seven previous bindings. Their results are shown in Table 5.10.

Module Functions Classes

Names Docs Annotations | Names | Docstrings | Castable
sglite3 73/79 71/79 0/79 15/15 3/15 0/15
Ixml | 113571200 | 3871202 | 1197123 | 107/123 | 26/123

Table 5.10 Summary results of the analysis of sqlite3 and Ixml

Both libxml2 and Ixml are modules that aim to bind the libxmlI2 C library. However,
Ixml is developed specifically to be more natively compatible with Python and “with the
simplicity of a native Python API” [Welt 2022]. libxmI2 however, which is officially
updated alongside the C library, does not emphasize being Pythonic, noting in the official
repository “some of the Python purist dislike the default set of Python bindings, rather than
complaining I suggest they have a look at Ixml the more pythonic bindings for libxml2 and
libxslt” [Veillard and Wellnhofer 2022]. This is reflected in certain aspects of their
idiomatic compliance, with Ixml having a much higher percentage of names that follow the
standard and docstrings. Interestingly, they both do not implement any notable amounts
annotations on their functions, and libxml2 provides more casting and printability than
Ixml.

sglite3 performed similarly to Ixml, with almost no names not following standards,

but also a surprising lack of annotations or castability. This is especially surprising, as the
48

http://lxml.de/
http://lxml.de/
http://lxml.de/

sglite3 library is a built-in module of Python. However, the module has existed in Python
since Python 2, before annotations were introduced, and likely has not been updated much

since its original release.

49

CHAPTER 6

Design and Implementation of pylibsrcml

Beyond analysis, the binding idioms, defined in this thesis, can also be used to help
focus and guide development or updating of bindings to ensure they become Pythonic and
simple to use for an end user. To demonstrate this, we highlight the process of updating
pylibsrcml, a Python binding of the libsrcml C library.

The previous version of pylibsrcml was released in June of 2022. Since then, it has
been discovered that pylibsrcml had many missing features, extraneous error checking, and
a workflow that felt more like programming in C than in Python. To solve this problem
and improve the binding, the following steps are taken:

e First, we identify all functions that libsrcml provides in its C API.

e Second, we group these functions up based on them being attached to a
particular structure or being free.

e Third, using the rules from them mapping structs to classes and mapping
free functions, we create classes based off all found structures, and add each
function to its class. If a function is free, we implement it at the top level.

We also follow naming guidelines for all things we port over.

50

e Fourth, we determine if any functions would be better suited as a one of the
magic function idioms, e.g., “srcml_unit_free” is best implemented as a
destructor, “srcml_archive_read_unit” works best as an iterator, etc.

e Lastly, we go through the remaining idioms and add support where possible.
Each function and class are gone through and docstrings and annotations
are added, taking information from the C library if necessary.

Following these steps results in pylibsrcml growing in both scale and quality. All
missing features of libsrcml are implemented fully and pylibsreml satisfies all the binding
idioms to a greater degree than it did previously. Table 6.1 shows the comparison between
the older version of pylibsrcml and the newer version in terms of idiomatic compliance,
using the same criteria as is used for all the bindings analyzed in the previous section.

In all metrics except castability and printability, the compliance percentage has
increased. The apparent decrease in castability and printability is due to the presence of
four new data classes added to address missing features in pylibsrcml. Most categories also
reached 100% compliance due to the development guidelines we use while developing
pylibsrcml.

Because of the development process that is put in place for pylibsrcml, the process
for updating pylibsrcml to match updates to libsrmcl has also been trivialized. Any time a
new function or feature is added to libsrcml, the same development procedures can be used

to implement these functions into pylibsrcml efficiently and in a Pythonic way.

51

Module Old pylibsrcml | Current pylibsreml
Iteration 0/1 2/2
Context Managing 0/1 414
Casting 1/2 1/6
Printability 1/2 1/6
Member Functions

properly Mapped 109/ 109 231/231
Free Functions

properly Mapped 50 /50 50 /50
Destructors 2/2 414
Raising Errors 871/70 75175
Class Docstrings 0/3 18/18
Function Docstrings 21162 294 1 294
Annotations 0/162 270/ 294
Class Names 0/3 18/18
Function Names 154 /162 294 / 294
Constant Names 36/38 39/39

Table 6.1 Summary results of comparing the two different version of pylibsrcml

! The older version of pylibsrcml included error checking on more functions that

required, breaking said functions altogether.

52

CHAPTER 7

Conclusions and Future Work

In this thesis we present the definition and application of 11 Pythonic idioms and
various guidelines intended for use on Python bindings of C libraries. As shown, these
idioms prove effective for both evaluating Python bindings in terms of how Pythonic they
are and guiding development of Python bindings to ensure they become Pythonic. We
believe that these bindings will provide great help in standardizing Python bindings and

improve how well these bindings interact with developers.

7.1.1 Future Work

In the future, we believe this work can be applied to Python modules in general to
gauge how Pythonic they are. By adapting some of the idioms’ rules to become broader,
and not dependent on underlying C code, we can measure idiomatic compliance of all
Python modules, including the Python standard library.

Work from this thesis is also inspiring a methodology in how to develop other
bindings of libsrcml in other languages. Specifically, another binding of libsrcml, a
JavaScript/Web Assembly wrapper tentatively known as libsrmcl.js, is being developed

currently. This development is taking a similar approach to the improvements made to

53

pylibsrcml, with JavaScript standards being considered and implemented throughout the

development process.

54

CHAPTER 8

References

ALEXANDRU, C.V., MERCHANTE, J.J., PANICHELLA, S., PROKSCH, S., GALL, H.C., AND
ROBLES, G. 2018. On the usage of pythonic idioms. Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Association for Computing Machinery,
1-11.

COLLARD, M.L., DECKER, M.J., AND MALETIC, J.I. 2011. Lightweight Transformation and
Fact Extraction with the srcML Toolkit. 2011 IEEE 11th International Working
Conference on Source Code Analysis and Manipulation, IEEE, 173-184.

COLLARD, M.L., DECKER, M.J., AND MALETIC, J.I. 2013. srcML: An Infrastructure for the
Exploration, Analysis, and Manipulation of Source Code: A Tool Demonstration.
29th IEEE International Conference on Software Maintenance (ICSM), 516-519.

FAROOQ, A. AND ZAYTSEV, V. 2021. There is more than one way to zen your Python.
Proceedings of the 14th ACM SIGPLAN International Conference on Software
Language Engineering, Association for Computing Machinery, 68-82.

GOODGER, D. AND VAN Rossum, G. 2001. PEP 257 — Docstring Conventions |

peps.python.org. https://peps.python.org/pep-0257/.

55

GooGLE. Google Python Style Guide. https://google.github.io/styleguide/pyguide.html.

PERLIS, A.J. AND RUGABER, S. 1979. Programming with idioms in APL. ACM SIGAPL
APL Quote Quad 9, 4-P1, 232-235.

PYTHON SOFTWARE FOUNDATION. 2023. ctypes — A foreign function library for Python.
Python documentation. https://docs.python.org/3/library/ctypes.html.

REITZ, K. The Hitchhiker’s Guide to Python! https://docs.python-guide.org/.

RiGo, A. AND FuALKOwWsKI, M. CFFI documentation. CFFI 1.15.1 documentation.
https://cffi.readthedocs.io/en/latest/.

VAN ROSSUM, G., LEHTOSALO, J., AND LANGA, L. 2015. PEP 484 — Type Hints |
peps.python.org. https://peps.python.org/pep-0484/.

VAN ROssuM, G., WARSAW, B., AND COGHLAN, N. 2013. PEP 8 — Style Guide for Python
Code | peps.python.org. https://peps.python.org/pep-0008/#function-and-variable-
names.

SWIG. 2022. SWIG and Python. https://www.swig.org/.

VEILLARD, D. AND WELLNHOFER, N. 2022. Python bindings - Wiki - GNOME / libxmI2 -
GitLab. GitLab. https://gitlab.gnome.org/GNOME/libxml2/-/wikis/Python-
bindings.

WELT, S. 2022. Ixml - Processing XML and HTML with Python. https://Ixml.de/.

ZHANG, Z., XING, Z., XIA, X., XU, X., ZHU, L., AND Lu, Q. 2023a. Faster or Slower?
Performance Mystery of Python Idioms Unveiled with Empirical Evidence.
Proceedings of the 45th International Conference on Software Engineering, IEEE

Press, 1495-1507.

56

ZHANG, Z., XING, Z., XU, X., AND ZHU, L. 2023b. Rldiom: Automatically Refactoring Non-
Idiomatic Python Code with Pythonic Idioms. Proceedings of the 45th
International Conference on Software Engineering: Companion Proceedings,

IEEE Press, 102-106.

57

Accessibility Report

		Filename:

		Thesis.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 0

		Failed manually: 0

		Skipped: 5

		Passed: 26

		Failed: 1

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Skipped		Document is tagged PDF

		Logical Reading Order		Skipped		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Skipped		Bookmarks are present in large documents

		Color contrast		Skipped		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Passed		Tables should have headers

		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Skipped		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Failed		Appropriate nesting

Back to Top

