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Abstract 
Quantum computing is advancing rapidly, with developers increasingly adopting quantum 

programming languages. However, despite progress in quantum research, there is a notable lack 
of development tools and technologies that assist developers in designing and analyzing quantum 
programs. This work aims to address this gap using a software engineering approach. Specifically, 
the srcML infrastructure is leveraged to automate the static analysis and refactoring of OpenQASM 
quantum programs by implementing a tool, QStatic. Then QStatic’s potential is demonstrated by 
identifying and refactoring common code patterns. The approach enables the exploration and 
manipulation of quantum source code, effectively addressing numerous challenges in quantum 
programming, such as optimizing quantum gates to reduce runtime costs. 

Introduction 
Quantum computing is quickly evolving, capturing the attention of both researchers and 

industry practitioners. With companies investing in quantum computers, research, and talent, the 
quantum computing market is expected to grow from USD $1.3 billion in 2024 to an estimated 
USD $5.3 billion by 2029 with a compound annual growth rate of 32.7% [1]. Naturally, with the 
rise in quantum computing comes the rise of quantum programs. Quantum algorithms are now 
evolving beyond simple circuit representations to complex programs implemented in specialized 
quantum languages, leading to an explosion in the development of more sophisticated large 
quantum applications. 

With this expansion of quantum programming, the demand for high-quality code and advanced 
development tools is becoming crucial. Recent studies highlight the importance of effective 
programming approaches in advancing quantum computing. For instance, Weidenfeller et al. [2] 
found that certain software strategies make quantum circuits more efficient, especially on systems 
with hardware limitations. Abbas et al. [3] also stress that algorithms are crucial for improving 
performance by optimizing the accuracy of quantum gates and reducing the time they take to run. 
Despite some progress, there remains a noticeable gap in the tools available to developers, 
ultimately hindering their ability to effectively design quantum programs [4, 5]. While various 
tools attempt to address this gap, they are still not sufficient. For example, QSmell [6] detects 
various quantum code smells using static and dynamic analysis. Similarly, LintQ [7] and QChecker 
[8] utilize static analysis to identify bugs in quantum programs. However, these techniques are 
restricted to specific frameworks, such as Qiskit, and lack generalizability to other quantum 
programming languages. 
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In this work, we present a more flexible and generalizable approach that utilizes the srcML 
infrastructure [9, 10] to automate the analysis and refactoring of OpenQASM quantum programs 
through the development and implementation of a static analysis tool, QStatic. This tool enables 
developers to effectively analyze quantum code and optimize performance through automated 
refactoring. We showcase QStatic’s potential by identifying and refactoring various common 
quantum code patterns. Ultimately, our approach establishes a practical infrastructure that serves 
as a foundation for evolving quantum programming languages, empowering them to better meet 
the dynamic demands of quantum software development. 

From Quantum Circuits to Code 
As quantum computing grows in popularity, new tools are being developed to support the ever-

growing infrastructure. A common way of expressing quantum algorithms is through quantum 
circuit diagrams, which serve as visual representations of qubits and the gates performed on them 
over time. These diagrams can effectively capture the physical structure and operational order of 
the hardware running quantum algorithms but can be difficult to understand, explain, and create. 

Quantum programming languages provide an efficient means to represent and create quantum 
algorithms and programs [11]. Similarly to classical computing, which can be represented through 
circuit diagrams, low-level machine languages, and high-level programming languages, quantum 
computing has both low and high-level programming languages. Examples of low-level quantum 
programming languages include OpenQASM and Quil, and high-level languages include Q#, 
Scaffold, and Silq [12]. These languages and others combine quantum concepts such as qubit and 
quantum gates to merge these features with classical programming features such as looping, 
branching, and classical data. Figure 1 showcases a quantum circuit and its equivalent 
representation in OpenQASM. 

As powerful and interesting as quantum programming languages are, there are still many issues 
that quantum programs face. To start with, running quantum programs is very expensive. 
Researchers and companies that use or operate quantum machines must make sure that the code 
they are running is correct and will generate the desired results. Running an expensive task on a 
quantum machine, only to find that the program written has a bug can be devastating (and costly) 
[5]. Similarly, running an inefficient piece of software can unnecessarily waste time and money, 
when a more efficient equivalent version can be used. Classical computing faced similar issues in 
the past, and as tools improved, writing high quality code became both cheaper and faster. 

Beyond execution, quantum programs also struggle with readability. Many quantum programs 
are translated directly from circuits and, as a result, are mainly a string of quantum gate calls. This 
can be difficult to read and understand. Using software engineering concepts such as encapsulation 
and procedural abstraction can drastically improve the readability of the code. To solve these 
issues, we take a software engineering approach to examining quantum source code and aim to 
create development tools which can support quantum programming languages. 
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Figure 1: An example quantum circuit (left) and an equivalent representation in OpenQASM 
(right). 

Static Analysis for Quantum Source Code 
Software engineering broadly aims to support the development, debugging, testing, 

maintenance, and understanding of software systems. Specifically, we are interested in static 
program analysis, which is the analysis of source code (without execution). 

Static program analysis is performed by examining the written source code and identifying 
patterns, idioms, and other aspects. This information allows researchers to construct tools to better 
support software development, including the detection of code smells, refactoring the source code, 
and developing tools to aid developers – such as linters. 

Static program analysis is normally done on an abstract syntax tree (AST) representation of 
the source code as defined by the grammar for the programming language. However, little work 
has been done on producing usable ASTs for quantum programming languages. Highly specialized 
static analysis tools that work solely on a single language do exist. For example, Xia and Zhao 
[13] created a method for statically analyzing the entanglement information of Q# programs by 
generating control flow graphs. Such tools work well but are highly specialized and are usually 
not generalizable to other quantum languages or useful for developing other kinds of static 
analysis.  

To enable static analysis of quantum programming languages, an AST representation is 
necessary. To achieve that, we utilize srcML (www.srcML.org), a highly scalable infrastructure 
designed to transform source code across multiple programming languages into a structured XML 
representation [9, 10]. The srcML format allows us to access the source code’s syntax, which in 
turn supports static program analysis. Figure 2 showcases an example of OpenQASM srcML using 
the example from Figure 1. 

include "stdgates.inc"; 
 
qubit q1; 
qubit q2; 
qubit q3; 
 
h q1; 
h q2; 
 
cx q1, q2; 
cx q2, q3; 
 
bit bit1; 
bit bit2; 
bit bit3; 
 
bit1 = measure q1; 
bit2 = measure q2; 
bit3 = measure q3; 

H 

H Q1 

Q2 

Q3 
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Figure 2: OpenQASM source code from Figure 1 (left) and its srcML representation (right) 

 

In previous work [14], we established a foundational methodology for integrating quantum 
programming languages into the srcML infrastructure, focusing on OpenQASM 3.0. This involved 
designing srcML-based ASTs that leverage classical language concepts (e.g., variables, control 
flow) while introducing generalizable syntactic categories for quantum-specific constructs (e.g., 
qubit registers, quantum gates). To ensure our srcML extensions could support future quantum 
language adoption, we aligned OpenQASM’s quantum features with patterns from other quantum 
languages. Additionally, we developed a prototype tool to demonstrate execution-order analysis. 

Building on this foundation, the current work introduces QStatic1, a tool designed to 
automate both static analysis and refactoring for OpenQASM. QStatic directly implements 
automated refactoring rules for common quantum patterns including: 

• Iteration patterns: Restructuring repetitive code into loops for improved readability and 
maintainability 

• Hadamard gate reduction: Replacing redundant operations with optimized equivalents. 
• Code encapsulation: Modularizing frequently used operations into custom gate definitions 

to shorten code and improve readability. 

QStatic aims to improve quantum programming by assisting to reduce manual effort, minimize 
errors, and enhance the efficiency of quantum code. This advancement bridges the gap between 

 
1 The tool is available at github.com/srcML/QStatic  

include "stdgates.inc"; 
 
qubit q1; 
qubit q2; 
qubit q3; 
 
h q1; 
h q2; 
 
cx q1, q2; 
cx q2, q3; 
 
bit bit1; 
bit bit2; 
bit bit3; 
 
bit1 = measure q1; 
bit2 = measure q2; 
bit3 = measure q3; 

<include>include <literal type="string">stdgates.inc"</literal>;</include> 
 
<decl_stmt><decl><type><name>qubit</name></type> <name>q1</name></decl>;</decl_stmt> 
<decl_stmt><decl><type><name>qubit</name></type> <name>q2</name></decl>;</decl_stmt> 
<decl_stmt><decl><type><name>qubit</name></type> <name>q3</name></decl>;</decl_stmt> 
 
<expr_stmt><expr><call><name>h</name> <argument_list 
type="quantum"><argument><expr><name>q1</name></expr></argument></argument_list></call></expr>
;</expr_stmt> 
<expr_stmt><expr><call><name>h</name> <argument_list 
type="quantum"><argument><expr><name>q2</name></expr></argument></argument_list></call></expr>
;</expr_stmt> 
 
<expr_stmt><expr><call><name>cx</name> <argument_list 
type="quantum"><argument><expr><name>q1</name></expr></argument>, 
<argument><expr><name>q2</name></expr></argument></argument_list></call></expr>;</expr_stmt> 
<expr_stmt><expr><call><name>cx</name> <argument_list 
type="quantum"><argument><expr><name>q2</name></expr></argument>, 
<argument><expr><name>q3</name></expr></argument></argument_list></call></expr>;</expr_stmt> 
 
<decl_stmt><decl><type><name>bit</name></type> <name>bit1</name></decl>;</decl_stmt> 
<decl_stmt><decl><type><name>bit</name></type> <name>bit2</name></decl>;</decl_stmt> 
<decl_stmt><decl><type><name>bit</name></type> <name>bit3</name></decl>;</decl_stmt> 
 
<expr_stmt><expr><name>bit1</name> <operator>=</operator> <operator>measure</operator> 
<name>q1</name></expr>;</expr_stmt> 
<expr_stmt><expr><name>bit2</name> <operator>=</operator> <operator>measure</operator> 
<name>q2</name></expr>;</expr_stmt> 
<expr_stmt><expr><name>bit3</name> <operator>=</operator> <operator>measure</operator> 
<name>q3</name></expr>;</expr_stmt> 

https://github.com/srcML/QStatic
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theoretical analysis and practical tooling, accelerating the development and adoption of good-
quality scalable quantum software. 

Quantum Code Exploration 
srcML enables us to inspect quantum source code and identify patterns that might signal 

inefficiencies or other issues. To demonstrate the usefulness of this approach, we introduce an 
infrastructure, QStatic, that leverages srcML to perform execution order analysis and refactoring 
on the OpenQASM source code. Execution order analysis involves gathering and analyzing the 
order of operations performed within the source code, specifically focusing on the order of 
quantum gate calls and the qubits affected. 

We perform execution order analysis through a multi-step process designed to clarify the 
sequence of quantum operations. First, when quantum calls are encapsulated within a for loop, we 
use loop unrolling, a process of expanding a for loop into its equivalent individual calls, to identify 
the qubits that are affected and their order. Next, we expand calls to user-defined gates and 
functions to capture the fundamental quantum operations performed. Quantum operations that 
occur inside of if-statements are labeled with the if-statement’s condition, allowing future support 
of control flow analysis. Gathering this data allows us to tackle some of the many problems facing 
quantum programming. Static analysis is vital for improving code readability and refactoring to 
increase performance.  

Identifying Iteration Patterns for Refactoring 
Iteration patterns are small patterns of code where similar operations are performed in a certain 

order on qubits. Wen et al. defined three types of iteration patterns for use in their Quantivine 
visualization tool [15]: vertical (performing the same operation on different qubits), horizontal 
(performing the same operation on the same qubit), and diagonal (performing the same binary 
operation on a “step-like” pattern of qubits). Their tool uses the patterns to create more concise 
visualizations of quantum circuits to support scalability.  

 

Figure 3: OpenQASM quantum code which contains a series of swaps (left) and a refactored 
form which encapsulates the swaps in a for loop (right). The code being refactored showcases an 

example of diagonal iteration. 

 

include "stdgates.inc"; 
qubit[4] q; 
swap q[0], q[1]; 
swap q[1], q[2]; 
swap q[2], q[3]; 
swap q[3], q[4]; 

include "stdgates.inc"; 
qubit[4] q; 
for unit i in [0 : 4] { 
  swap q[i], q[i+1]; 
} 

swap i, i+1 
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For quantum source code, these patterns are useful for identifying sections of source code 
where multiple statements can be condensed into a loop. Utilizing QStatic’s ability to support 
transformations, we can refactor source code that contains any of the three iteration patterns to 
condense the various statements and operations into a for loop and improve the readability of the 
source code. An example, demonstrating a series of swaps on an array of qubits is shown in Figure 
3. 

Encapsulating Common Code Snippets 
In a similar vein to iteration patterns, certain operations may be performed numerous times 

consecutively, but without an easy way to wrap them into a loop. In these cases, the operations can 
be contained into a custom gate definition. This new gate takes the place of all the various calls, 
shortening the code and improving its readability. 

Figure 4 demonstrates an example of this process. We identify two sections of code which 
contain the same quantum gate calls in a row. We record these calls and check that their argument 
patterns are identical. Using this pattern, we create a new gate and replace all instances of the 
concurrent gate calls with a single call to the defined gate. This makes the code easier to understand 
and develop as the program evolves. 

 

 

Figure 4: OpenQASM code which repeats a series of cx, cx, and ccx calls in two places (left) 
and a refactored form where the calls are encapsulated into a custom gate call (right) 

 

include "stdgates.inc"; 
 
qubit cin; 
qubit[4] a; 
qubit[4] b; 
 
cx a[0], b[0]; 
cx a[0], cin; 
ccx cin, b[0], a[0]; 
 
for uint i in [0 : 2] { 
  cx a[i+1], b[i+1]; 
  cx a[i+1], a[i]; 
  ccx a[i], b[i+1], a[i+1]; 
} 

include "stdgates.inc"; 
 
gate majority a, b, c { 
  cx a, b; 
  cx a, c; 
  ccx c, b, a; 
} 
 
qubit cin; 
qubit[4] a; 
qubit[4] b; 
 
majority a[0], b[0], cin; 
 
for uint i in [0 : 2] { 
  majority a[i+1], b[i+1], a[i]; 
} 

cx 1, 2; 
cx 1, 3; 
ccx 1, 2, 3; 
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Improving Efficiency 
Companies that offer access to their quantum computers typically charge end users to run code, 

sometimes with a long wait list. These wait times can be exacerbated by small errors in the code – 
if something is slightly wrong it becomes costly and time consuming to fix and rerun. Improving 
the efficiency of quantum programs can save researchers, end users, and quantum companies both 
time and money. 

srcML enables the identification of various inefficiencies and provides the means to replace 
them with more efficient code. For instance, consider the presence of a CNOT gate in a Hadamard 
basis. When a CNOT is performed on two qubits between two Hadamard gate calls on both qubits, 
the result is equivalent to solely performing a CNOT with the target and control qubits flipped. 
This is illustrated in Figure 5. 

Using srcML, we can refactor this code by first identifying areas where the five operations are 
performed on two qubits in the correct order, deleting all Hadamard gate calls, and replacing the 
CNOT call with the reversed call. This not only reduces the number of statements within the source 
code but also provides a marginal increase in execution. Running the two different programs in 
Figure 5 through the qubit simulator in Amazon’s braket Python module, we find that the single 
CNOT call executes slightly faster regardless of how many qubits we ask the simulator to test. 
While improvements are minor with smaller amounts of qubits, every single run is faster on the 
reversed CNOT than with the Hadamard basis. To test the speed of the two programs, we ran 
braket’s simulator 100 times with an increasing number of shots. That is, 100 times with 100 shots, 
100 times with 1000 shots, all the way to 107 shots. Each of the 100 runs are then averaged out 
together. At 107 shots, we see a speed increase of three seconds from the reversed CNOT compared 
to the Hadamard basis. While this is a relatively simple example for a developer to identify and fix 
themselves, and the speed improvements are minor, it demonstrates how quantum programs can 
contain inefficiencies that can be automatically identified and improved by using srcML. 

 

 

Figure 5: Two OpenQASM code snippets, one showing a CNOT in a Hadamard basis (left) and 
the other showing the reversed CNOT (right). The operations on the qubits produce the same 

result, with the single CNOT being more concise. 

 

h a; 
h b; 
 
cx a, b; 
 
h a; 
h b; 

cx b, a; 
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Conclusion 
General tools for static analysis have the potential to significantly enhance the current quantum 

software ecosystem, bringing development tools up to the standards of those available for 
traditional programming languages such as C++. As quantum software becomes more mainstream, 
developers will demand better tools to aid in their work. Developing and maintaining these tools 
requires a robust infrastructure, and srcML is well-equipped to address many of the challenges 
involved. This is due to its ability to handle systems written in multiple programming languages 
(i.e., polyglot systems). 

Our research represents the initial phase of what can be achieved with static analysis for 
quantum programs by implementing and showcasing one such tool, QStatic. We plan to extend 
this work to create a suite of tools that assist quantum developers with everyday tasks and integrate 
it into the srcML infrastructure. This integration will allow us to support quantum languages across 
other tools in our infrastructure. For example, srcML has a slicing tool that can be adapted to slice 
certain qubits and identify all lines in a program that affects any given qubit.  Additionally, the 
infrastructure supports other advanced tasks, including source code querying and manipulation, 
enabling quantum programmers to search for specific patterns within source code and making the 
identification of certain patterns or features very simple. 
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