1Trace-Toolkit: A Pipeline for Analyzing Eye-
Tracking Data of Software Engineering Studies

Joshua Behler
Department of Computer Science
Kent State University
Kent, Ohio, USA

jbehlerl @kent.edu

Praxis Weston
Department of Computer Science
Kent State University
Kent, Ohio, USA
gweston2@kent.edu

Drew T. Guarnera
Department of Mathematical and
Computer Sciences
College of Wooster
Wooster, Ohio, USA

Bonita Sharif
School of Computing
University of Nebraska-Lincoln
Lincoln, Nebraska, USA

bsharif@unl.edu

Abstract—iTrace is community eye-tracking infrastructure
that enables conducting eye-tracking studies within an Integrated
Development Environment (IDE). It consists of a set of tools for
gathering eye-tracking data on large real software projects within
an IDE during studies on source code. Once the raw eye-tracking
data is collected, processing is necessary before it can be used for
analysis. Rather than provide the raw data for researchers to
analyze and write their own customize scripts, we introduce
iTrace-Toolkit - a suite of tools that assists with combining
different data files generated from iTrace and its IDE plugins
(namely Visual Studio, Atom, and Eclipse). iTrace-Toolkit also
provides the crucial mapping of the valid raw eye-tracking data to
source code tokens and finally generates fixations (an important
metric in eye-tracking for comprehension) using three commonly
used algorithms based on distance and velocity of eye movements.
iTrace-Toolkit keeps track of all participant data and tasks during
a given study and produces a complete lightweight database of the
raw, mapped, and fixation data that is standardized and ready to
be used by statistical tools. A simple GUI interface is provided for
quick access to filter the data after an eye-tracking study. iTrace-
Toolkit also allows for the export of the data or subset of the data
to text formats for further statistical processing.

YouTube Video:
https://www.youtube.com/watch?v=9j20sOANh8w

Keywords— eye tracking, empirical studies, fixations, pipeline

I. INTRODUCTION

The iTrace eye-tracking infrastructure [1], [2] is used by
software engineering researchers to aid with their studies on real
coding environments. Normally, eye-tracking studies on
software development would require the participant to view a
static image of code. While this works, it can feel unnatural to a
participant when they are more familiar with code appearing in
a common IDE like Visual Studio or Eclipse along with the
ability to scroll and look back and forth at multiple files. iTrace
alleviates this problem by providing iTrace-Core and the iTrace
IDE Plugins. By using iTrace-Core along with an IDE Plugin of
choice, studies are performed with participants looking at a
familiar workspace while also allowing dynamic scrolling and
changing of the files read. This process also helps researchers
conduct their research faster, as code no longer needs to fit on

dguarnera@wooster.edu

Jonathan 1. Maletic
Department of Computer Science
Kent State University
Kent, Ohio, USA
jmaletic@kent.edu

screen dimensions nor needs to be converted to images for
viewing.

Both iTrace-Core and the iTrace Plugins output large XML
files containing a list of the information gathered during the eye-
tracking session—iTrace-Core gathering the raw gaze data, and
the Plugin gathering IDE contextual information. An issue that
researchers face with this data is in analyzing the output for their
particular task. A simple five-minute session can result in
35,000+ gaze and contextual data points saved in roughly 30 MB
of XML files. Analysis of this data is not only difficult, but also
non standardized, meaning that each individual researcher must
implement their own software to go through the data to do any
research tasks such as mapping gazes to tokens, calculating
fixations and saccades [3], and filtering data points based on the
research subject.

To facilitate researchers to analyze their data, we introduce
iTrace-Toolkit, an application focused on combining, mapping,
analyzing, and filtering the output from iTrace-Core and iTrace
Plugins. iTrace-Toolkit offers the following features to software
engineering researchers:

e Source Code Token and Context Mapping: The
iTrace Plugin data contains file line and column
information that is gathered from the IDE but, beyond
that, does not provide any additional information.
iTrace-Toolkit captures the entire word or symbol
located at the line and column and provides the relevant
syntactical context of the token. Contextual information
can include the file being looked at, line and column
info, and the related syntax of the token. This
information is crucial for studies on program
comprehension for example.

o Fixation Generation: Eye trackers and the iTrace
Plugins are designed to produce and collect eye raw
gazes. In order to make sense of the data, fixations need
to be computed. A fixation happens when the eye
stabilizes on a certain part of the stimuli (e.g., source
code) for a given duration. Thus implying the user is
reading/comprehending some aspect of the stimuli.
Fixations are a set of raw gazes in a certain area in space
and time. Using iTrace-Toolkit and various pre-defined

fixation algorithms [3], researchers can choose to
generate and store fixation information.

o Fixation Filtering: Due to the large amounts of gazes
and fixations that are acquired during a recording
session, iTrace-Toolkit provides a filtering option to
help researchers focus on values pertinent to their study.
The filtering can be performed with various parameters
and allows for custom filtering queries to be imported.
We use this feature in our own studies to quickly make
sense of the data right after a study.

This paper is organized as follows. In the next section, we
give an overview of the complete iTrace Infrastructure, of which
iTrace-Toolkit is part of. Next, the implementation of iTrace-
Toolkit is presented in Section III. The basic functionality of
iTrace-Toolkit is given in Section I'V along with usage scenarios
in Section V. The final section, Section VI, provides conclusions
and future directions.

II. THE ITRACE INFRASTRUCTURE

iTrace-Toolkit is designed to be used within the greater
iTrace Infrastructure [1], [2], as detailed in Figure 1, to ease a
researcher’s burden of analyzing their data. A researcher sets up
and conducts their study using iTrace-Core and one of the
various IDE Plugins and collects all the Core and Plugin output
data files from each of their participants doing a set of tasks.
Optional tools such as the iTrace-Core built-in Deja Vu tool can
be used to get accurate data if high-speed eye trackers (>300Hz)
are used [2]. Note that it is also recommended that each task be
recorded as a separate session for each participant to clearly
delineate tasks. After gathering all the files from the researcher’s
sessions, iTrace-Toolkit is used to create a database, and all the
Core and Plugin files are brought into the database. It is best
practice to include in one database all the recording sessions of
a study that share a target code space — i.e., if 20 participants
looked at program A and 30 participants looked at program B,
two databases should be made—one for the A sessions and one
for the B sessions. iTrace-Toolkit allows for previously made
databases to be imported as well, giving the researcher full
flexibility in how they want to keep track of their data.

= & srcML
iTrace-Core |—»|| Core Data — || Archive(s)
\,,7//777\\ -

S ~
IDE Plugins >1 t’lugin Dataj

iTrace-Toolkit

»| iTrace
Database

Figure 1: An overview of the iTrace Infrastructure and how
iTrace-Toolkit fits within it.

Some tools offer a similar level of analysis but are limited in
their scope or ability to analyze. For example, our previous work
on the gazel tool [4] can help analyze data generated with the

iTrace-Atom Plugin. It does not currently work with the other
iTrace Plugins nor does it store a lightweight database of various
features iTrace-Toolkit offers.

III. ITRACE-TOOLKIT IMPLEMENTATION

iTrace-Toolkit is implemented using a variety of
technologies to store and transform large amounts of data
produced during an eye-tracking study. Note that a study can
easily collect a few GBs of data with 30 participants working on
3 tasks each for instance. The amount of data generated is also
highly dependent on the eye tracker speed (how many samples
are generated per second — iTrace supports all speeds), amount
of code viewed, and time to complete the task. The current
implementation is in C++ with an SQLite database. Please note
that iTrace-Toolkit currently only supports Windows. A
publicly available tool with usage instructions and example data
is available at https:/github.com/iTrace-Dev/iTrace-
Toolkit/releases/tag/alpha-0.2.1

A. Implementation of Technologies

iTrace-Toolkit has gone through numerous design changes
during its development. iTrace-Toolkit originally started out as
a Tkinter program [5] written in Python. It quickly became
apparent that more efficiency was necessary to address the size
of the data. We settled on using the Qt platform [6] with C++ to
provide both faster speeds along with a more modern GUI feel.
One downside of using Qt is that the Qt library for interacting
with an SQLite database is rather slow. To fix this, we opted to
use the C library for SQLite. These changes, along with tactful
indexing of the database, gave us an almost 11x speed increase.
iTrace-Toolkit went from taking five and a half hours to map the
tokens of 13 tasks down to just 30 minutes.

B. iTrace Database

Before any gaze or context data can be analyzed or even
imported, an iTrace Database needs to be created. iTrace-
Toolkit makes use of SQLite to store the imported data. All
analysis performed is also done on this database. iTrace-Toolkit
allows a new, empty database to be created, or for a previously
made database to be opened and used again.

Specific information on the tables and their columns can be
found on iTrace-Toolkit’s GitHub wiki page!. The three most
important tables are gaze, ide context, and fixation.
The gaze table stores the raw gaze data produced from iTrace-
Core. The ide context data saves the information from the
Plugin file as well as token mapping information. The
fixation table is where fixations are stored after calculation.

IV. ITRACE-TOOLKIT PIPELINE

The design of iTrace-Toolkit is divided into separate tasks
which compute and transform raw eye tracking data into more
abstract and useful concepts.

A. Importing Core and Plugin Data

After an iTrace database is created, the files generated from
iTrace-Core and an iTrace Plugin can be imported. Core and
Plugin data must be imported in pairs, one pair for each eye-

! https://github.com/iTrace-Dev/iTrace-Toolkit/wiki/Entity-
Relationship-Diagram-for-Post-Processing-Database

tracking session performed. A folder containing multiple pairs
can be selected, allowing for bulk importing. After the sessions
are imported, a list of each session’s id and name is listed, and a
checkbox is shown next to each session. The checkboxes allow
a user to pick which sessions to use for mapping or for fixation
generation—any unchecked session will be ignored.

B. Token Mapping

One of iTrace-Toolkit’s primary features is the ability to map
the line and column information to a token in the source code.
This is an extremely crucial part of analyzing eye tracking data
on source code. Researchers are interested in what words or
symbols a participant looks at during a session. iTrace-Toolkit
allows a researcher to calculate these tokens by providing the
source code that is examined during the session. iTrace-Toolkit
leverages srcML? [7], [8] to accomplish this task. srcML is an
infrastructure to support the analysis, exploration, and
manipulation of source code. It produces an XML representation
of source code that provides abstract syntactic information. It
also provides both context and positional information of the
source code, which is vital for our token mapping. srcML
currently supports C, C++, C#, and Java.

iTrace-Toolkit locates the corresponding srcML
representation for the file which is being examined. It will then
find the srcML tag located at the correct line/column. Because
line/column data represents only one character, iTrace-Toolkit
will also find the whole token by first figuring out which type of
token is being examined — whitespace, a word, or a symbol such
as an operator. It will then march left and right until it finds a
character that does not fit within that type. This token will be
recorded inside the ide context row that provides the
line/column data. It is important to note that if the token happens
to be whitespace, the whitespace itself will not be recorded, and
it will instead be saved as WHITESPACE in the database.

1 #include <iostream>
2

3~ int main() {

4 return @;

5 1

Figure 2: A small example of C++ code with a raw gaze point
(highlighted)

Along with the full token, iTrace-Toolkit records contextual
data about what the user is viewing and stores it. Consider the
C++ code in Figure 2. The yellow-highlighted character is at
line, column position (3, 6), and represents a point of data in the
ide context table. We can see that the user is looking at the
function name, main, which is recorded in the token column.
Contextually we know that main is the name of a function
inside the file (referred to as a unit by srcML), and by using
stcML we record this context in the table as well. For this
example, the user is looking at the name of a function at the top
level of a file. We store this data in two columns in the database,
source token xpath and source token syntac
tic context. The syntactic context column stores an
arrowed list of srcML tags that describes where the text is
located contextually. The syntactic context of this example

would be unit->function->name. The XPath column
stores an XPath query that leads to the exact tag in the srcML.
The XPath for this example is (assuming the file name is
file.cpp):

//src:unit[@filename="file.cpp']/
src:function[@pos:start="'3:1"' and
@pos:end='5:1"]/src:name[@pos:start='3:5"' and
@pos:end='3:8"]

Because of the additional positional information that is
stored, the XPath is always unique to the specific token that is
being examined, while a syntactic context can refer to multiple
entries within the database.

C. Fixation Generation

iTrace-Toolkit’s other primary feature is the ability to group
together gazes to form fixations [3]. Eye movements are
characterized mainly by two main events - saccades (rapid darts
between objects) and fixations (focuses on objects). Because an
eye tracker only gets so many snapshots of an eye (e.g., 60, 120,
... data points per second), it is important to know if a gaze is
part of a saccade or a fixation. iTrace-Toolkit implements three
different algorithms to calculate fixations: Basic, I-VT, and I-
DT [3], [9]. The I-VT algorithm is based on velocity whereas
the I-DT is based on dispersion of the raw gazes. We
recommend using the I-VT filter for 200Hz+ eye trackers. These
algorithms’ parameters can be adjusted in the Ul by the
researcher depending on their needs. After generating fixations,
the fixation, fixation gaze, and fixation run
tables in the database are populated with data related to the
fixation generation run. Sessions can have multiple fixation
generation runs performed on them, allowing comparison
between algorithms and their various settings.

If token mapping is performed before running the fixation
run, fixations can be mapped with the ide context list and
grab the token information that matches with the gazes. If no
valid information is found the fixation will instead contain blank
data indicating eye movements on something other than source
code. While fixations can be generated without token mapping,
any resulting fixations will lack token and contextual
information.

iTrace-Toolkit is designed to allow for modular fixation
algorithm implementation. If future work or individual
researchers devise new fixation detection algorithms, iTrace-
Toolkit eases the process of implementing and integrating new
algorithms. We provide the three most popular fixation detection
algorithms but welcome the community to add more as needed
as there might be cases where a study might require a different
method of generating fixations.

D. Fixation Filtering

After fixations are generated, iTrace-Toolkit offers tools to
help researchers gather the fixations they are studying. Fixations
can be filtered by various factors, such as pupil diameter, file
name, token type, file line and column, and fixation duration to
name a few. These filters can be imported and exported for more
fine-tuned filtering and for use outside of Trace-Toolkit
respectively. Figure 3 showcases the various options available

2 See www.srcML.org

for fixation filtering. The filtered fixations can be saved in a
.db3, .tsv, .json, or .xml file format, and can undergo whatever
further statistical analysis the researcher needs in a statistical
package of their choosing.

V. USAGE SCENARIOS

Using iTrace-Toolkit involves first running an eye-tracking
study using iTrace Core and one of the IDE plugins. Studies are
usually characterized by having participants look through source
code and complete software engineering tasks. Tasks can
include things like finding bugs in the code, determining the
output of a block of code, summarizing code after reading it, or
reading all comments in a file.

Once the researcher has finalized the design of the study and
tasks, they typically start data collection. During data collection,
human participants (developers) are presented with the task(s)
and source code project. iTrace allows for large code bases to be
explored in an IDE within the context of a software engineering
task. Participants can freely switch between multiple files and
scroll within a file. After a participant completes the study, the
resulting data is used as input into iTrace-Toolkit. The data
includes the raw eye gaze data and the corresponding line,
column, and file information.

B iTrace Toolkit - X

Fixation Target (leave blank to disable):

Token Type (leave blank to disable):

Duration (ms):
Min: | 0 Max: | -1
Source File Line:
Min: | 0 Max: | -1
Source File Column:
Min: | 0 Max: | -1

Pupil Diameters (mm)

3.50

Output File Type:

.db3

<>

Import/Export SQL Files:

Export Current Settings Load SQL File and Filter

Close Output Folder Filter

Figure 3: Fixation Filtering Options in iTrace-Toolkit.

Processing and filtering eye tracking data takes a substantial
amount of time. iTrace-Toolkit alleviates this burden on the
researcher and allows them to focus on their research rather than
the tool itself. iTrace-Core and the iTrace Plugins can be used
for conducting studies involving many different software tasks
such as code summarization, bug localization, and code review.

iTrace-Toolkit can then be used to process, map, analyze and
filter the rich data set generated from these tasks, which is the
most time-consuming part of studies.

After the data is imported into the database, line and column
coordinates are mapped to tokens. Token mapping can be the
longest step of using iTrace-Toolkit, and long studies with larger
code bases took about 30 minutes in our latest test. After the
tokens are mapped, fixations are generated, a researcher can
either manually analyze the fixations in the database or use the
built-in filtering tools to select specific fixations within specified
criteria. After the researcher generates fixations and sets the
filtering parameters how they want, they can choose between
various output formats depending on their needs. Filters can be
exported and imported, allowing for reuse later if multiple
databases are needed. The output file will contain the fixations
that fit the criteria provided in the filtering window. Typically,
at this point, the researcher will export all the data they need out
of iTrace-Toolkit for further statistical analysis based on their
specific research questions. After this, the researcher is free to
analyze the exported information in any way they need for their
research.

VI. LIMITATIONS AND FUTURE WORK

iTrace-Toolkit currently supports the iTrace IDE Plugins
Visual Studio, Atom, and Eclipse. Additionally, iTrace-Toolkit
is limited in token mapping by srcML’s support of programming
languages. Currently, C/C++, Java, and C# are supported by
srcML. However, support for other languages is planned by the
srcML project. Studies that involve languages other than those
supported can still use iTrace-Toolkit to generate fixations, but
any token or syntactic information will need to be analyzed
separately outside of iTrace-Toolkit.

Plugin data generated by iTrace-Chrome, the iTrace Plugin
for the Google Chrome Web Browser, cannot be analyzed by
iTrace-Toolkit due to iTrace-Chrome’s data being ad-hoc based
on the webpage being viewed. The iTrace-Chrome data needs to
be analyzed with the support of ad-hoc specialized scripts. As
part of future work, iTrace-Toolkit will be expanded to allow for
iTrace-Chrome data to be imported for fixation analysis, as well
as provide a custom system to analyze the tokens on popular web
pages such as Stack Overflow or GitHub pages.

iTrace-Toolkit also currently does not calculate any saccade
[3] or microsaccade [10] information, which is useful for
determining cognitive load. Additionally, iTrace-Toolkit can be
improved further by implementing more fixation detection
algorithms made specifically for source code, as it has been
shown that developers read source code very differently from
natural language. A command line interface for iTrace-Toolkit
is also planned as part of our future work, along with versions
for both Mac and Linux based Distros.

REFERENCES

[1] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“iTrace: eye tracking infrastructure for development environments,” in /0th
ACM Symposium on Eye tracking Research and Applications, Warsaw, Poland,
Jun. 2018, p. 3. doi: 10.1145/3204493.3208343.

[2] V. Zyrianov et al., “Deja Vu: semantics-aware recording and replay
of high-speed eye tracking and interaction data to support cognitive studies of
software engineering tasks—methodology and analyses,” Empir Sofiware Eng,
vol. 27, no. 7, p. 168, Dec. 2022, doi: 10.1007/s10664-022-10209-3.

[3] D. D. Salvucci and J. H. Goldberg, “Identifying Fixations and
Saccades in Eye-tracking Protocols,” in 2000 Symposium on Eye Tracking
Research & Applications, Palm Beach Gardens, Florida, USA, Nov. 2000, pp.
71-78. doi: 10.1145/355017.355028.

[4] S. Fakhoury et al., “gazel: Supporting Source Code Edits in Eye-
Tracking Studies,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion), Madrid,
ES, May 2021, pp. 69-72. doi: 10.1109/ICSE-Companion52605.2021.00038.
[5] “tkinter — Python interface to Tcl/Tk.” Accessed: Feb. 08, 2023.
[Online]. Available: https://docs.python.org/3/library/tkinter.html

[6] “Qt Reference Pages.” Accessed: Feb. 08, 2023. [Online].
Available: https://doc.qt.io/qt-5.15/reference-overview.html

[7] M. L. Collard, M. J. Decker, and J. 1. Maletic, “srcML: An
Infrastructure for the Exploration, Analysis, and Manipulation of Source Code:
A Tool Demonstration,” in 2013 IEEE International Conference on Software

Maintenance, Eindhoven, Netherlands, Sep. 2013, pp. 516-519. doi:
10.1109/ICSM.2013.85.

[8] M. L. Collard, M. J. Decker, and J. 1. Maletic, “Lightweight
Transformation and Fact Extraction with the srcML Toolkit,” in 2011 IEEE
11th International Working Conference on Source Code Analysis and
Manipulation, Williamsburg, Virginia, USA, Sep. 2011, pp. 173-184. doi:
10.1109/SCAM.2011.19.

[9] P. Olsson, “Real-time and Offline Filters for Eye Tracking,”
Masters Thesis, KTH Electrical Engineering, Stockholm, Sweden, 2007.
Accessed: Jun. 21, 2019. [Online]. Available:
https://pdfs.semanticscholar.org/4167/7844556582adc68a5al4dbblcea0b28d9
016.pdf

[10] R. Engbert and R. Kliegl, “Microsaccades Keep the Eyes’ Balance
During Fixation,” Psychol Sci, vol. 15, no. 6, pp. 431-431, Jun. 2004, doi:
10.1111/5.0956-7976.2004.00697 .x.

