
Automated Fixation Error Correction to Support Eye Tracking
Studies on Source Code
DREW T. GUARNERA, College of Wooster, USA

JOSHUA A.C. BEHLER, Kent State University, USA
BONITA SHARIF, University of Nebraska-Lincoln, USA

JONATHAN I. MALETIC, Kent State University, USA

A significant challenge in eye-tracking studies is detecting and fixing errors in data collection that happen

for various reasons (drift, calibration issues, etc.). Many errors cannot be fully mitigated and require manual

correction (which is intensively time-consuming) or automated correction. The work presented in this paper

focuses on error correction, primarily on eye-tracking data on source code written in programming languages

such as C++, Java, and C#. Many automated correction solutions are general-purpose, computationally

inefficient, and use little information about the stimulus. To bridge this gap, we introduce srcGaze, a heuristic
algorithm explicitly developed for correcting fixation gaze events in eye-tracking data from studies using

source code as a stimulus. A golden dataset is manually constructed and verified to establish the heuristics.

Results show a ≈40% improvement compared to no fixation correction. The approach has a multi-linear

complexity and can correct over 44K fixations in approximately 6 seconds.

CCS Concepts: •Hardware; • Software and its engineering; •Human-centered computing→ Empirical
studies in HCI; Heuristic evaluations; • Applied computing;

Additional Key Words and Phrases: AOI Methods, Automated analysis methods, Tools for eye tracking analysis

ACM Reference Format:
Drew T. Guarnera, Joshua A.C. Behler, Bonita Sharif, and Jonathan I. Maletic. 2025. Automated Fixation

Error Correction to Support Eye Tracking Studies on Source Code. Proc. ACM Hum.-Comput. Interact. 9, 3,
Article ETRA04 (May 2025), 17 pages. https://doi.org/10.1145/3725829

1 Introduction
Eye tracking is an integral part of software engineering research [29, 35]. There are numerous efforts

to understand the cognitive process of developers and their approach to program comprehension

and maintenance tasks. This work shows much promise, but inherent challenges are associated

with eye-tracking technology for software development research. Even when fixating on a single

point, the human eye is never entirely still. Data produced by an eye tracker is constantly in flux,

with data points scattered in the vicinity of an area of focus, which introduces a non-trivial amount

of noise. To help mitigate this issue, gaze processing algorithms [4, 21, 30, 31, 34, 37, 38] are used

to filter and group gaze into an approximate region or fixation. While many techniques exist

from scholarly work [21, 31, 34, 38] and proprietary commercial products [30], they are mainly

geared toward activities that involve observing small static images, watching video, or reading

short natural language prose. Even though these approaches are used with positive effect in those

Authors’ Contact Information: Drew T. Guarnera, College of Wooster, Wooster, Ohio, USA, dguarnera@wooster.edu; Joshua

A.C. Behler, Kent State University, Kent, Ohio, USA, jbehler1@kent.edu; Bonita Sharif, University of Nebraska-Lincoln,

Lincoln, Nebraska, USA, bsharif@unl.edu; Jonathan I. Maletic, Kent State University, Kent, Ohio, USA, jmaletic@kent.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2573-0142/2025/5-ARTETRA04

https://doi.org/10.1145/3725829

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

https://doi.org/10.1145/3725829
https://doi.org/10.1145/3725829

ETRA04:2 Guarnera et al.

domains, research shows that developers do not read or view source code the same way as natural

language prose [7, 9–11, 20]. That is, reading source code is different than reading natural language

text, hence gaze processing approaches need to be specifically developed for source code stimuli.

Textual tokens in a source-code document have different semantic meanings that impact the order

in which a developer reads the content, allowing them to skip large sections or review a specific

section multiple times, in the context of data and control flow paths.

Collecting eye-tracking data has inherent imperfections. Issues arise from the participant, the

experiment facilitator, the environment, the study design, and even the eye-tracking device. Any

of these issues can cause erroneous data to be recorded. While some of these problems can be

mitigated, error correction for eye-tracking data is necessary to ensure proper results are obtained

during collection and subsequent analysis. This time-consuming task is often done manually during

or after recording eye-tracking data [8]. While some automated approaches exist for correcting

eye-tracking data, most focus on prose as the intended stimulus rather than source code. These

challenges and limited support for source-code-based stimulus studies motivate the need for an

algorithm designed explicitly for fixation correction when using source-code stimuli. To bridge this

gap, the paper introduces srcGaze - a heuristic fixation error correction algorithm for source code.

To study how developers address various software engineering tasks it is important to have

fine grained Areas of Interests (AOIs). Thus, AOIs are normally at the token level for source code
when studying developer eye movements. In the context of this work, source code tokens are

anything a lexer (i.e., compiler) separates as a token in the programming language. This includes all

keywords, identifier names, and symbols (e.g., "(", ")", ";", etc.). However, this fine grained level AOI

dramatically increases the overall number of AOIs making it difficult and algorithmically complex

to manage and process the data.

srcGaze leverages the syntactic information of tokens (AOIs) in the source code to ascertain

heuristics on when and what tokens are most likely to be viewed. This results in a more accurate

clustering of gaze data into fixations. The approach proposed here considers 1) spatial information

for AOIs, 2) fixation locations in two-dimensional Euclidean space on the screen, and 3) the

syntactic meaning of each token in the source code. To develop this approach we need to identify

the most syntactically relevant tokens in source code (RQ1) and use these elements with positional

information to perform a syntactic fixation correction for the source-code stimulus. Additionally,

we compare the results to determine if the approach is improved (RQ2). Lastly, given the shear

number of AOIs, the scalability of the approach (RQ3) is critical. A slow running algorithm will

mean hours of processing versus seconds. Thus, this research addresses the following questions

that build on top of each other as explained above.

• RQ1: What are the syntactic types of the tokens fixated on most frequently?

• RQ2: Are heuristics identified from syntactic token types effective for enhancing fixation

event correction?

• RQ3: Is using a heuristic approach at scale feasible?

The paper is organized as follows. Section 2 discusses related work on addressing errors in

fixations. The data set used along with how we processed the data is presented in Section 3. This

data is then used to construct a golden set and develop heuristics in Section 4. The srcGaze algorithm
is presented in Section 5 with results given in Section 6. Threats to validity are given in Section 7

followed by conclusions and future work in Section 8.

2 Related Work
Eye-tracking devices are susceptible to error while recording eye movement data [15, 17, 19, 26, 27,

32, 39]. These errors can come from participant movements, eye physiology, eyewear, makeup, and

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code ETRA04:3

changes to the testing environment, such as ambient lighting. When areas of interest (AOIs) in

a study are large, spatial errors are less problematic than those with smaller AOIs, such as when

reading prose or source code [8]. With small AOIs, the margin for error narrows as spatial errors

in gaze data can cause fixations to be attributed to incorrect textual tokens, negatively impacting

analysis and results. Issues with errors in eye-tracking data are compounded as the data stream an

eye-tracking device collects has a temporal element, as the degree of error can vary throughout a

study due to drift[8, 32].

While researchers attempt to mitigate the impact of potential error sources in eye-tracking

studies, the collected data will always have a degree of error. One of the most common methods

for addressing data errors in eye-tracking studies is manual correction [8] using visualizations

or assistive tools [2] to reposition gaze data for the stimulus. Manual validation is intensively

time-consuming, and the time required for manual correction is not possible for studies at scale.

Another critical issue is that manual validation can introduce subjectivity or bias from the data

reviewers. While bias can be limited by having multiple reviewers correct each trial and find

agreements between them, the time required for validation increases multiplicative.

The preferred approach to gaze event correction is automatic correction using various algo-

rithmic means. Automated algorithms are faster than manual correction and produce consistent

deterministic results. They can also be run as many times as needed while experimenting with

threshold parameters for event detection, which is impossible to accomplish manually in a rea-

sonable time frame. Automatic correction approaches in the research literature primarily focus

on standard prose reading tasks[16, 18, 25]. These approaches operate under some assumptions

about reading behavior in that domain and are not necessarily well suited for a reading style that

leverages heavy use of skimming, regressions, and non-linear reading patterns that follow code

execution order rather than reading line-by-line sequentially [9].

Compared to natural text reading, existing work for automated fixation correction on source

code is limited. Lohmeier conducted a program comprehension study to model comprehension

using anaphors in Java [22]. The approach to gaze event correction uses statistics and prior research

about vision to develop an automated algorithm. This algorithm places a bounding box around

potential fixation locations at the token level. An error function with parameters for horizontal

and vertical offsets along with a linear factor applied to the vertical component. These parameters

aim to find values such that the resulting error value is minimized for the fixation. This process is

computationally intensive as these parameters must be checked in a brute force manner to test all

possible combinations of values with the range defined by Lohmeier. To mitigate the computations,

the horizontal parameter is chosen by Lohmeier so that only two of the three parameters will need

to change for the brute force computation. Once correction offsets are found to minimize the error

value, the fixation is positioned to the nearest target, and fixed fixations that are not near any

targets are removed. The correction results are outlined with descriptive statistics and indicate that

the error, as calculated by the function, was lowered.

The approach closest to our work is that of Palmer and Sharif [32] who present an iterative

method for automatically correcting fixations for source code-based stimuli. This approach focuses

on line-based AOIs to correct vertical displacement in 68 trials. The first part of this method involves

an algorithm to determine clusters of fixations using a time window parameter. When a cluster

is detected, the fixations are flagged to be processed for correction. In the second stage of the

algorithm, fixation clusters are scored based on the ratio of fixations in the cluster contained within

an AOI out of the total number of fixations in the cluster. If a cluster has no points within an AOI,

the cluster is moved until at least one fixation is in an AOI. Once a cluster touches at least one AOI,

the Hill Climber algorithm is run on the cluster. The validation of this approach uses manually

corrected fixations and reports an average accuracy of 89.78% among all the trials, with 90% of the

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

ETRA04:4 Guarnera et al.

corrections matching manual corrections. This approach primarily focuses on the vertical drift to

correct fixation to the appropriate line. When token or “sub-line” level AOIs are considered, the

effectiveness becomes 59.47%. In the next section, we present our dataset and study methodology.

3 Data Set and Methodology
The Distributed Collection of Eye Movement Data in Programming dataset (hereby referred to as

the EMIP dataset) released in 2019 [5] is the primary data source for the study presented in this

paper. At the time of writing, this dataset is the most extensive public collection of eye-tracking

data on source code stimulus, with 216 participants from 11 different institutions in 9 countries.

Study participants are presented with two source code samples for program comprehension tasks

written in Java, Scala, or Python, depending on their experience with a language. We refer the

reader to the EMIP paper [5] for details on the eye tracking setup, tasks, and stimuli used. From the

EMIP dataset package, we use the raw gaze data for each trial, stimulus images, and the textual

version of the Java source code. This data was processed using the fixation algorithm from the EMIP

toolkit [1] to generate fixations. This dispersion-based filter uses a minimum fixation duration of

50 milliseconds to exclude any fixation detected that is less than 50 milliseconds. The window size

is initially set to the minimum fixation duration and is expanded to include data samples with a

dispersion of less than 25 pixels. The dispersion is calculated by finding the differences between

the minimum and maximum x and y values of samples in the window and summing the x and y

differences together, as standardized by Salvucci and Goldberg [34].

3.1 Privacy and Ethics
The eye tracking data used in this paper was collected and published by prior researchers in

accordance with their ethics and institutional review board processes. The dataset was released

publicly to be used by the eye tracking community. All data is provided de-identified to preserve

confidentiality.

3.2 Preprocessing
Before we can start to address the research questions, we need to preprocess the EMIP dataset. This

procedure is explained next. To use the stimulus effectively with the gaze data recorded from the

eye tracker, areas of interest (AOIs) must be identified as potential locations for fixation events. The

EMIP dataset package provides jpeg images of each stimulus shown to a participant and files with

line and token bounding box positions in the stimulus directory. Each bounding box represents the

x and y coordinates for two points on a stimulus image, and we can identify a rectangular region

using the two points. Using the provided AOI bounding boxes, line bounding boxes do not contain

leading white space, which is a part of each indented line, and token boundaries share a portion of

any separating white space between characters.

Token identification in this manner results in different types of tokens being grouped. Current

research has not demonstrated an optimal AOI granularity level for source code tokens. To that

end, the finest level of syntactic granularity supporting the broadest possible analysis is used in

this work. Tokens are separated by white space and complex names when the dot operator (‘.‘)
accesses class attributes or methods. This granularity level makes it possible to reconstruct any

higher-level syntactic constructs in the code.

In previous work [22], a common approach to determining the AOI a fixation would hit is based

on the center of the token. However, this introduces a bias when the tokens are all different sizes.

Consider the example in Figure 1. There are two words: dissertation and PhD representing token

AOIs. For each AOI, a red line splits the middle of each token, showing the center point along the

vertical axis. Subsequently, a blue line represents the midpoint between the center of each token.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code ETRA04:5

Using these AOIs, any fixation that falls to the left of the blue line would be associated with the

word dissertation, while any fixation right of the blue line would be associated with PhD. These
regions show that while some fixations can fall on the "ion" in the word dissertation, they will still

be associated with the smaller AOI of PhD.

Fig. 1. Demonstration of how using distances to center points for AOIs of varying sizes can result in mis-
matching. The two red lines in the image show the center of each word, and the blue line represents the exact
midpoint between the centers of each word. All fixations that fall to the right of the blue line will still be
associated with shorter fixation AOI PhD while still including characters from the longer word dissertation,
introducing a bias to the smaller AOI.

While this may seem innocuous, the eye tracker used for the EMIP data collection reports an

accuracy of <0.4° and a precision of ≈ 0.03° of visual angle. The human eye only has between 2° and

5° viewing angles with clear visual acuity [14] within the eye’s fovea region. Using the visual angle

formula [14], with participants seated 50 cm from the eye tracker [5] and the textual characters

having an area of ≈3.8 cm (or 11 x 13 pixels), each character is ≈4°of visual angle. This means that

the tracker can misreport actual gaze locations by a distance of around one character. Figure 1

demonstrates this bias of a few characters is significant enough to make a difference in fixation

assignment to tokens. For this study, AOIs are assigned to every character in each stimulus file

to limit the impact on token assignment and provide a more equitable comparison of closeness

between tokens. Generation of the character-based bounding boxes is bootstrapped with Google’s

Tesseract OCR engine [36] to locate the characters in the image, and then the bounding boxes are

manually expanded.

Source code syntactic category information is obtained using srcML [12, 13] on the Java source

code stimulus (presently, the only language of the three that srcML supports). srcML is a robust and

highly scalable infrastructure that transforms source code into an XML representation. The XML

tags wrap around all of the tokens within the original source code and provide syntactic information.

For example, an if statement would be surrounded by an <if> tag, the condition of the if statement

would be further nested within a <condition> tag, and so on. Additionally, srcML preserves the

entirety of the original code, including all comments and whitespace, and also provides starting

and ending line and column information per syntactic tag, allowing us to identify not only what

token or character was being viewed, but also what that token means within the context of source

code. Along with the syntactic information generated by srcML, the –position argument to srcML

provides all tokens’ starting and ending line and column information. Combining the syntactic

information, line and column position data, source code text, and the character AOI bounding

boxes, a mapping document is created to merge this content together. See Figure 2 for an example

of the srcML representation.

3.3 Token Classification
To answer RQ1, we first need to determine token categories. Previous work by Busjahn et al. [10]

categorizes Java source code tokens as presented in the first column of Table 1. The identifier

category is the broadest and is defined as "sequences of letters and digits that denote [names of]

variables, methods, etc." [10]. Implicitly expressed by this statement, type names are also included

in this category as long as they are not reserved keywords in Java (e.g., int, double, etc.). Keywords

are words reserved for the Java language and cannot be used in identifiers. In the Rectangle and

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

ETRA04:6 Guarnera et al.

Fig. 2. An example of Java code (top) and its srcML representation (below). The code consists of a single
if statement which contains an assignment. Each tag wraps the tokens from the original code. Position
information (line X column), within the file, can also be added to each tag via the tool.

Vehicle stimulus, the keywords used are this, class, public, private, static, void, int, float, double,
return, new, if, and else. Literals are any value represented as a string in quotes like "Audi" from the

Vehicle code example or constant numeric values like 10 used in Rectangle. There are other literal

values, but strings and numeric values are the only types used in the code examples. Separators

are explicitly defined in [10] as parenthesis (()), curly braces ({ }), brackets ([]), period (.) comma

(,), and semi-colon (;). Operators are described as "one or two characters," with an example using

the addition (+) and increment operators (++). Given the operator definition and the explicit list of

separators, the characters classified as operators present in the Rectangle and Vehicle code are =,
>, +, -, and *. The last token category was added for this work and is simply whitespace, which

serves as indentation and horizontal separation between tokens in lines of code. Only the space

characters are considered in the whitespace category despite newline characters appearing in the

document. Since source code lines contain either a curly brace or semicolon as a visible ending

character, “empty” lines only have a new line and no content to read by a participant. For those

reasons, newline characters are ignored as AOI target candidates.

The Busjahn categories are a solid start for this work and provide a baseline for categorizing

the tokens. Using these categories from their 2011 work, they found that the identifier category

dominated total dwell time (time spent fixating on a given token) at 53% [11]. Follow-up work

in 2014 found that when normalized for token length, dwell time was nearly an even split with

all token categories between ≈20% and ≈26% except for separators at ≈8%. This finding leads to
an issue with this categorization of tokens when using token types from syntactic contexts for

fixation correction. Given the similarity of dwell time over the smaller categories, it is likely worth

expanding the token categories to cover more granularity.

In a recent study by Aljehane et al. [3], srcML was used for token identification, revealing nine

categories for tokens viewed by novice and expert developers. These categories include identifiers,

method signatures, keywords, variable names, variable types, names in if statements, operators

in if statements, names in else statements, and arguments. Notably, these categories tend to lose

coverage when the hierarchical context is considered, such as observation of tokens specifically

within control structures like if statements and else clauses. This, combined with the findings of

Busjahn et al., underscores the need for more granularity in the token categories and expanded

categories with less hierarchical context. Such an expansion could potentially enhance the accuracy

of fixation correction, a vital goal of srcGaze. The second column of Table 1 presents the srcML

token categories for the tokens based on the Rectangle and Vehicle source code stimulus.

Additionally, work from 2015 by Rodeghero et al. finds that method signatures are read fre-

quently in short code snippets, especially by novice developers [33]. The inclusion of specific token

categories in srcGaze for elements of functions and constructors, which are more precise than the

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code ETRA04:7

Table 1. Source code token categories from Busjahn’s work alongside the token categories from srcML used
by srcGaze. Overlapping token categories have been bolded.

Busjahn Token Categories srcML Token Categories
identifier, keyword, literal, operator,
specifier, separator, expression,
whitespace

class-name, class-specifier,

constructor-name,

constructor-specifier,

complex-name-expression,

function-call, function-name,

function-type-specifier, keyword,
literal, name-declaration,

name-expression, operator, separator,
type-name, type-specifier, whitespace

Busjahn categories, is a crucial step in improving fixation correction. Even with the additional

whitespace between the lines in the code stimulus, the textual tokens remain in close proximity. The

incorporation of categories with enhanced granularity means the difference between correcting

a gaze to a function name or a variable name within that function. This distinction is of utmost

importance for the resolution of fixation corrections in eye-tracking studies.

The srcGaze categories are also more closely related to the programming language’s syntax.

For example, the period character is the "dot operator" or member-access operator in the Java

programming language and not a separator as in prose text or the Busjahn categories. This is used

to access members of a class, such as the x and y member variables for Rectangle or producer and
topSpeed from Vehicle and also call functions from the method such as width from Rectangle or

accelerate from Vehicle. In addition to the dot operator, when parenthesis controls the order of

operations, they are considered operators acting on the result of an expression.

3.4 Verifiability
A replication package [6] with the implementation of the srcGaze algorithm, all fixation mappings,

stimuli, and supporting documentation is available as supplementary material.

4 Golden Set
We construct and use a golden set for the following reasons. Fixations can vary significantly based

on the algorithm, the parameters used, and the correction methods applied. This limits the ability to

perform a one-to-one comparison of efficacy while working with the data. The purpose of the golden

set is to use manual human fixation corrections as a benchmark for success. These corrections are

used as a proxy for ground truth to compare against the automated approach provided by 𝑠𝑟𝑐𝐺𝑎𝑧𝑒 .

The rationale is to develop an approach that will correct data automatically and similar to a human

reviewer. A golden set of fixation corrections is a set of changes agreed upon by a set of reviewers.

4.1 Generating the Golden Set
Multiple manual validators for each task/trial are needed to construct a golden set of fixations to

reduce personal bias in the fixation correction process. We use a sample of 12,605 total fixations, over

47 tasks, from 28 EMIP trials as a subset to validate manually. Nine data validators were recruited

from five different academic institutions to participate. Three of the data reviewers have performed

eye-tracking research before this work. All validators have a firm understanding of source code, with

two being undergraduates, four being graduate students, and three being instructors or professors

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

ETRA04:8 Guarnera et al.

Fig. 3. Eye movement data represented within the visualization tool used for manual fixation correction.
Light red dots are the raw gaze positions used to calculate a fixation. The red, green, purple, yellow, and
blue dots are all fixations, with the lines between the dots showing saccadic motions representing the scan
paths for the previous (red dots) and subsequent (blue dots) two fixations to the current fixation (the single
green dot). The order of prior and subsequent fixations is shown using a +/- 1 and 2. The green dot is the
current fixation that can be repositioned by clicking on the stimulus image. The green dot defaults to the
initial location of the fixation calculated by the SMI tracker’s dispersion algorithm. If the current fixation
needs to be moved, the purple dot always represents the original location of the current fixation. The yellow
dot can assist reviewers in showing the character token nearest to the original location of the current fixation.
This feature is useful when, to the human eye, there may be two equally “close” token characters.

in Computer Science fields of study. All validation participants are voluntary, and no compensation

or rewards are provided to bias their work.

Each validator uses a custom-built fixation correction tool (see Figures 3 and 4) that presents the

stimulus overlaid with the fixation to be corrected, two prior fixations, two subsequent fixations,

numbering to determine fixation order, and saccadic movement lines to connect the fixations.

The tool supports showing the nearest character AOI and the original fixation location to help

decide where to position a fixation. Participants only need to click on the stimulus image where

they believe the fixation should go, and the offset is recorded. Documentation with one example

of fixation correction and instructions for using the tool are provided, but no additional hints

or guidance to avoid potential bias. Figure 3 is a simple screenshot of the entire UI showing the

fixation correction tool that annotators used. Figure 4 shows the stimulus with labels for what the

visual elements are.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code ETRA04:9

Fig. 4. A close-up of the fixation data overlaid on the image stimulus in the visualization tool to provide
movement context during manual fixation correction. Light red dots are the raw gaze positions used to
calculate a fixation. The red, green, and blue dots are all fixations, while the lines between the dots are
saccadic motions representing the scan paths. The green dot is the fixation to be corrected and defaults to
the location calculated by the SMI tracker’s dispersion algorithm. The red dots and blue dots provide context
representing the previous and subsequent two fixations with respect to the current fixation (the green dot).
The order of prior and subsequent fixations is shown using a +/- 1 and 2. Users can click a location on the
image stimulus to reposition the fixation, and the green scan path lines are redrawn to show the impact of
the change.

Two different validators manually correct each dataset, and fixation corrections from each pair of

reviewers are assessed to ensure agreement to construct the golden set. Agreement in this context

does not mean that participants must select the same AOI. Since the correction is done manually,

and the AOIs are generated for each character in the stimulus, it is reasonable to assume that

misclicks within a token are possible. Additionally, the specific letter of a token is only partially

representative of the content. Instead, participants must choose a character within the same token

to agree. This is the only safe option with only two reviewers for each trial, as evaluating automated

fixation corrections on data that does not have a consensus between human reviewers will be

inconclusive. The results from the manual validation are processed automatically using a Python

script for agreement, and subsequent golden set files are created for fixation data from each task.

This data is used to help establish the syntactic-based correction heuristics for srcGaze, which is

described next.

4.2 Golden Set Token Frequency - RQ1 Results
Utilizing the token categories described in Section 3.3 on the golden set of manually corrected

fixations described above in Section 4.1, we can answer RQ1: What are the syntactic types of
the tokens fixated on most frequently? The srcML-based categories occurring in the golden set

are presented in Table 2. The complex-name-expression category includes all use of the this keyword
in expressions using the dot operator (.) to access a class member. Considering the Vehicle and

Rectangle stimulus, this would include many expressions in the code. Variables not included in

this category are names of the class members used in the complex-name-expression, variables in
parameter lists, and declarations. Variables in parameter lists and declarations are classified by the

name-declaration category, indicating the intent to create and use a new variable in the program.

A point of interest is that the second most frequently fixated token category are tokens in the

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

ETRA04:10 Guarnera et al.

name-declaration category despite representing only ≈2% of all the tokens in the stimulus and ≈5%
of the total characters. The type-name category indicates types defined by a programmer or by the

Java programming language (e.g., primitive types like int, float, double, etc.) used for all program

variables.

The following two categories, function-call and function-name, represent expressions that call
a function (e.g., width or accelerate from Rectangle and Vehicle) and the name of the function

in a method signature, respectively. These categories represent a divergent point in the srcGaze
categories. The function-call category has nearly 10% of the fixations, while function-name drops
to half that at about 5%. The assumption for this sudden drop is that for program comprehension

activities, function-call represents that last category in the stimulus used repeatedly throughout

the code. In the case of a function’s name (remembering that methods and functions here are

synonymous), prior research [33] identifies that developers pay attention to the signature of a

function. This finding aligns with that as once a developer identifies the name of a function and

relates that to an associated purpose, the calls to the function being the context where it is used

take precedence. Leveraging the benefits of our multi-granular token syntax information from

srcML, we can search for all of our tokens that are enclosed in function-signature srcML element

and confirm this with 1,138 fixations (≈10%) focused on that aspect of the code. While we view

this finding in line with current research, it is worth noting that the code stimuli are short and

only require the knowledge of at most two well-named functions. In contrast, a more extensive

application may need more attention to this information due to the number of functions used in

the code and the complexity of their interactions.

The trend of lower fixation counts and duration falls moving toward the end of the data in

Table 2, but does illustrate a few general trends. Starting with the function-name category, only
four categories, function-name, name-expression, constructor-name, and class-name are elements of

the code that may represent content named by a developer. The remaining nine categories are all

content defined by the Java programming language. The lower fixation counts can be the result of

either this information being irrelevant to the task (likely with specifier categories) or familiarity

with the tokens due to their prevalence within the Java language, like with the keyword and operator
categories. The syntactic information collected from the golden set of fixations will serve as the

heuristic component for the srcGaze approach.

5 srcGaze: Fixation Correction Algorithm
Recall that automated fixation correction approaches commonly utilize brute force [22, 28, 32]

to repeatedly shift fixation positions either solely by x and y offsets or additional parameters for

axis offsets [22]. These approaches aim to ultimately move the data such that they approach or

enter a target AOI. While srcGaze also must locate target AOIs, compared to other methods, it

does not use trial and error over x/y coordinates of an arbitrary range. Instead, srcGaze utilizes
preconstructed mapping data to narrow the search space to the distance from the fixation’s original

position to the center of each AOI. The distance between the two points is a Euclidean distance

calculation where distance (𝑑) is equal to
√︁
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2. The initial implementation of

srcGaze performs this calculation from each fixation to the center of all character AOIs within the

source code stimulus. The shortest distance is determined to be a candidate for the corrected AOI

position. However, not all distances are treated equally.

As Table 2 shows, certain token types are more likely than others to interest programmers

reading the source code for comprehension. To that end, each distance calculation is adjusted based

on a token category weight. Weights are represented as a percentage of the overall distance. This

percentage is removed from the original distance calculation. A simple example is to assume that a

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code ETRA04:11

Table 2. srcGaze token category occurrences in the manually corrected fixation golden set. This table shows
similar results to the Busjahn categories for whitespace and "separator" like tokens have the lowest represen-
tation in the golden set. Looking at the token representation percentages, the table shows that the distribution
is more balanced than with the Busjahn categories to have the intended effect of a finer granularity for
the heuristic in srcGaze. The optimized weights are groupings that consider whether developers name the
tokens, the frequency at which tokens in the token categories appear, the relative impact on the semantic
behavior of the program, and token familiarity. These 30%, 15%, and 0% weights are based on the highest
token occurrences in the groupings (complex-name-expression at ≈30% and name-declaration at ≈15%). The 0%
weights are for tokens that are the most infrequent, familiar, or have the least impact on program semantics.

srcGaze
Token Category

Fixation
Count Token % Fixation

Duration Duration % Optimized
Weights

complex-name-expression 3,804 30.18% 424,544 30.20% 30.00%

name-declaration 1,761 13.97% 198,492 14.12% 15.00%

type-name 1,730 13.72% 193,336 13.75% 15.00%

function-call 1,279 10.15% 137,140 9.76% 30.00%

function-name 660 5.24% 73,744 5.25% 30.00%

literal 647 5.13% 71,884 5.11% 30.00%

name-expression 454 3.60% 49,456 3.52% 30.00%

keyword 447 3.55% 51,696 3.68% 15.00%

operator 444 3.52% 49,564 3.53% 15.00%

function-type-specifier 369 2.93% 40,876 2.91% 0.00%

constructor-name 309 2.45% 34,476 2.45% 15.00%

class-name 216 1.71% 25,368 1.80% 15.00%

separator 142 1.13% 15,344 1.09% 0.00%

constructor-specifier 140 1.11% 15,644 1.11% 0.00%

type-specifier 104 0.83% 12,580 0.89% 0.00%

class-specifier 95 0.75% 11,144 0.79% 0.00%

whitespace 4 0.03% 424 0.03% 0.00%

token category is weighted at 0.50 or 50%. Suppose the distance from the fixation to the center of

an AOI with that token category is 100 pixels. In that case, the distance becomes 100 − (100 ∗ .50)
or 50 pixels instead, prioritizing this token over other tokens that may be closer but with a smaller

weight. Algorithm 1 shows the pseudocode for srcGaze. Please refer to the supplementary package

for the complete implementation of the algorithm. srcGaze iterates over all fixations (line 8) and
each character AOIs present in the stimulus (line 9). The distance between each fixation and AOI is

calculated using Euclidean distance (line 10). The weight of a given token offsets the distance from

fixation to an AOI (lines 11 and 12). All AOIs will be checked as potential candidates to find the

closest weighted match, the current "best" shortest distance, and the AOI mapping at that distance

(lines 14-16). The result of this function is the AOI mapping with the closest weighted distance to

the fixation (nearest_aoi). Runtimes or algorithmic performance of approaches to fixation correction

utilizing an exhaustive search space, or brute force, are problematic for scalability as the size of the

data increases. srcGaze has a runtime of O(𝑛 ∗𝑚) where n is the number of fixations and m is the

number of AOIs, while brute force approaches run in O(𝑛2) or O(𝑛𝑚). When considering small

stimuli examples, the number of fixations and corrections needed will likely be smaller depending

on the difficulty of the example. We plan to apply this approach to correct data from large-scale

studies on code in open-source or industrial domains. Studies of this scale require extended periods

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

ETRA04:12 Guarnera et al.

of data collection, increasing the number of fixations and spanning the data collection across

multiple files. At scale, the efficiency that the srcGaze approach provides is beneficial for timely

data processing results. To demonstrate the performance of the approach, we provide an empirical

runtime using the 44,184 fixations in the dataset where the algorithms can correct all the fixations

in 6 seconds (see Section 6).

Algorithm 1 srcGaze Algorithm

1: procedure Fixation_Correction
2: uncorrected_fixations← List of fixations from any event detection algorithm

3: candidate_aois← List of AOIs with token syntactic context

4: syntactic_weights← Collection of all weights used for fixation repositioning

5: shortest_aoi_distance← 𝑁𝑜𝑛𝑒

6: nearest_aoi← 𝑁𝑜𝑛𝑒

7:

8: for each fixation in uncorrected_fixations do
9: for each aoi in candidate_aois do
10: distance← find_distance(fixation, aoi)

11: weight← get_token_weight(syntactic_weights, aoi)

12: distance← distance − (distance ∗ weight)
13:

14: if nearest_aoi == None OR shortest_aoi_distance > distance then
15: shortest_aoi_distance← distance
16: nearest_aoi← aoi
17: return nearest_aoi

6 Results for srcGaze’s effectiveness (RQ2) and efficiency (RQ3)
Evaluating srcGaze’s performance in terms of both its correctness when repositioning fixations

and computational efficiency at this task helps answer RQ2 and RQ3:

• RQ2: Are heuristics identified from syntactic token types effective for enhancing fixation

event correction?

• RQ3: Is using a heuristic approach at scale feasible?

To answer RQ2, fixation corrections performed by srcGaze are compared against the golden set

created by human reviewers. For this first test, srcGaze is configured to use the percentages in Table

2 based on the token target preferences in the golden set. For additional context, the golden set is

compared to the results from the SMI fixation algorithm without correction and correction that

only considers the closest token as the best AOI target. Table 3, with no correction performed on

the fixation, performance is roughly 30% agreement with the golden set. Naive correction, which

considers the closest token only without context, roughly doubles agreement with the golden

set to nearly 66% agreement with the golden set. Applying srcGaze with syntactic context to the

correction increases agreement to ≈72%. To put srcGaze’s results into perspective, the best approach
for fixation correction at the token level was 59.47% agreement with a golden set by Palmer et al.

However, even though a golden set was also used in that work, Palmer et al.’s approach intended to

target fixation correction at line-based granularity, not sub-line or token-based level. The 59.47%

agreement reported by Palmer et al. was to disclose at what granularity level their approach was

most successful. Other than the agreement percentage, no additional details regarding token level

correction are provided to provide a one-to-one comparison with srcGaze. [32]. Additionally, the

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code ETRA04:13

average and median distance required to correct a fixation using srcGaze is only 𝑎𝑝𝑝𝑟𝑜𝑥13 pixels

and ≈10 pixels, respectively, from its original position. Recalling that a character in on the EMIP

stimulus is roughly 11x13 pixels, meaning that srcGaze movements are not drastic and stay within

a one to two-character distance depending on the direction of movement.

Table 3. Performance difference between the golden set and no fixation correction, nearest token correction,
and srcGaze heuristic correction. Performance is worst without any correction in that only 32% of the fixation
targets agree with the golden set. Correcting fixations to the nearest token increases agreement to nearly
65%, while using srcGaze with token heuristics for correction agreement rises to nearly 71%.

Correction Methods Mean
Correct

Median
Correct

Total
Correct

No Correction 31.24% 28.67% 31.84%

Naive Nearest AOI 64.36% 65.33% 65.77%

srcGaze 70.79% 71.12% 71.86%

After these results, further optimizations to the category weights were considered. Examination

of the categories in Table 2 reveals that tokens named by programmers tend to get more fixations

than keywords, operators, or other consistent syntactic tokens regularly used in the language.

Additionally, some of the syntactic tokens provided by the language are shown to be of moderate

interest, specifically operators and keywords. With this in mind, the last column of Table 2 shows

new "optimized" category weights for srcGaze. The weights are based on the token category

distributions from the corrected fixations in the golden set, and intuition-based groupings.

The first grouping is tokens named by developers, used often in the code, and impact program

semantics. This grouping is given a weight based on the token category complex-name-expression
with ≈30% of the corrected tokens being from that category. Other tokens in this category are literal,
name-expression, function-call, and function-name which meet that criteria. The next grouping

is based on the second highest percentage which was name-declaration at ≈14%. This value was
rounded up to 15% to have “even” weight values. A developer still names tokens in this group,

which have semantic meaning in the code but appear less frequently or are familiar tokens from

the language (e.g., keywords and operators). This group includes class-name, constructor-name,
keyword, operator, and type-name. The remaining tokens were given 0% as they have the lowest

correction rates, have little to no impact on program semantics, or occur infrequently. These are

class-specifier, constructor-specifier, function-type-specifier, separator, type-specifier, and whitespace.
With these new weights, srcGaze’s agreement increased to 72.94%. While this is a small increase, it

illustrates that the original token weights and categories primarily represent the tokens expected to

be manually viewed by researchers correcting fixation data on source code. Additionally, it shows

room for improvement within the category weights and heuristic measures, providing a source of

future work. With these findings, we can answer RQ2 that heuristics effectively improve fixation

event correction.

RQ3 is concerned with the computational efficiency of srcGaze, so it supports fixation correction

of a more extensive study at scale. From a runtime performance perspective, this initial prototype

performs a linear search over all AOI positions to find the shortest weighted distance candidate.

Finding the closest fixation target requires checking each AOI and determining the distance to a

fixation. This operation is performed once for each fixation, meaning this approach has a worst-

case runtime complexity of 𝑂 (𝑛 ∗𝑚) where𝑚 is the number of fixations and 𝑛 is the number of

AOIs. This is a significant improvement compared to the quadratic (𝑂 (𝑛2)) or exponential (𝑂 (𝑛𝑚))
runtime of the brute force methods proposed in prior research. To further illustrate the efficiency of

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

ETRA04:14 Guarnera et al.

this approach, real-world measurements show performing fixation corrections on 44,184 fixations

generated via the SMI dispersion fixation filter from all 125 trial tasks in the EMIP dataset takes

only 6 seconds. This efficient performance is without any optimizations by limiting the AOI checks

to lines closest to the fixation or any early stoppage of the algorithm when the AOI distances

consistently increase over multiple lines (i.e., no other closer candidates exist). The performance

demonstrated in both theoretical and practical runtimes for srcGaze confidently shows that the

srcGaze approach is, in fact, efficient enough to be used on large datasets.

7 Threats to Validity
One limitation of this work is that the EMIP code stimuli are small single-file code examples. Since

the EMIP stimulus is designed for a broad range of participant experience from novice to expert,

some common language features such as control structures (while and for loops) are not used

at all, and the occurrence of other programming constructs used may not be representative of

the frequency at which they occur in more realistic software applications. This can impact the

heuristics values used for srcGaze, be tuned too closely for the EMIP stimulus, and be insufficient

to correct fixation data when larger-scale open or closed-source projects are used as stimulus. In

spite of this limitation, all programming languages follow grammar rules. As such, regardless of

the size of a source code application, tokens will still be used in similar ways. Additionally, some

token categories could be consolidated, such as the complex-name-expression and name-expression
categories, as they may better mimic the function-call and provide a more consistent categorization.

Revisions to the categories and comparisons of the correction performance with other studies using

different stimuli are planned for future work.

It is also important to note that fixations on tokens in the source code may depend on the type of

task [23] under observation. Comprehending what a program can do and searching an application

to locate sources of bugs or defects will undoubtedly overlap in the kinds of tokens viewed. Still, the

degree of the fixations for these token types may differ. The limitations mentioned above concerning

category representation in the stimulus are partially addressed with configurable parameters, the

same method utilized by the state-of-the-art event detection and correction algorithms. This allows

for tuning of the heuristic values based on the token categories if later work finds more optimal or

task-specific heuristic values for correction. While srcGaze’s improved runtime performance com-

pared to brute force methods from state-of-the-art approaches holds, the performance concerning

token-level fixation corrections may be impacted by the close association with the EMIP dataset

used for the heuristics. While the quantity of data used for srcGaze’s heuristic preferences is likely
adequate for similar use cases, and the distance for adjustments is well within reasonable margins,

follow-up work with a study using a large-scale application is planned to tune the approach further.

At this scale, a golden set may not be feasible, so crowd-sourcing methods will be investigated

based on sampling the fixations and presenting participants with a few options of possible tokens

rather than correcting the data themselves.

8 Conclusions and Future Work
The current state-of-the-art eye-tracking research on source code does gaze event correction as a

post-processing phase to fixation identification with event detection algorithms. Most approaches

to event correction are limited to brute force and manual correction methods. Researchers often use

these methods with textual prose (and images) but not source code. This gap in support for gaze

event correction on source code as an eye-tracking stimulus inspired the development of srcGaze, a
syntactic-aware gaze event correction heuristic algorithm, which is the primary contribution of this

work. Using a manually corrected set of over 12,000 fixations, srcGaze demonstrates exceptional

improvements with a rate of nearly 73% agreement with a golden set of manual corrections.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code ETRA04:15

srcGaze also scales better than previous automated approaches that utilize brute force methods with

quadratic (𝑂 (𝑛2)) or exponential (𝑂 (𝑛𝑚)) runtime complexities. srcGaze supports a linear runtime

(𝑂 (𝑛 ∗𝑚)) where 𝑛 refers to the number of potential AOI targets and𝑚 refers to the number of

fixations to correct. This superior computational performance allows srcGaze to correct 44,184

fixations in only 6 seconds. srcGaze’s improved fixation correction accuracy will save countless

person-hours for data correction and facilitate more extensive studies and rapid eye-tracking

research analysis in the program comprehension community.

As part of future work, extensions to srcGaze heuristics are planned to incorporate movement

trends in saccadic activity between fixations. Additionally, blended heuristic stages operating at

multiple syntactic granularity levels could increase srcGaze’s awareness of movement patterns

within source code structures such as loops, conditionals, etc. Concerning the heuristic categories,

evaluation of a Bayesian model approach to token category weights will be evaluated along

with new studies integrating larger, project-scale eye-tracking studies that fully represent typical

programming language features (e.g., control structures like loops). Heuristics pulled from these

new studies will improve the robustness of the heuristic categories and demonstrate srcGaze’s
effectiveness when used on stimuli other than the EMIP dataset. Additionally, performing eye-

tracking studies exploring dynamic software development activities such as debugging and fixing

source code issues or software evolution when developers create new features or re-architect the

software using refactorings could help us fine tune the algorithm to the task. While many studies

focus on program comprehension for reading static source code, the support for interacting with

the source code during eye-tracking with source code is minimal. Yet, these types of activities,

especially for maintenance, can account for up to 80% of software development costs [24]. These

activities will likely have different viewing patterns that could impact the heuristics of srcGaze.
Exploring these activities can help improve srcGaze’s performance and fill current research gaps.

References
[1] Naser Al Madi, Drew Guarnera, Bonita Sharif, and Jonathan Maletic. 2021. EMIP Toolkit: A Python Library for

Customized Post-processing of the Eye Movements in Programming Dataset. In ACM Symposium on Eye Tracking
Research and Applications (ETRA ’21 Short Papers). Association for Computing Machinery, New York, NY, USA, 1–6.

https://doi.org/10.1145/3448018.3457425

[2] Naser Al Madi, Brett Torra, Yixin Li, and Najam Tariq. 2025. Combining automation and expertise: A semi-automated

approach to correcting eye-tracking data in reading tasks. Behavior Research Methods 57, 2 (24 Jan 2025), 72. https:

//doi.org/10.3758/s13428-025-02597-3

[3] Salwa Aljehane, Bonita Sharif, and Jonathan Maletic. 2021. Determining Differences in Reading Behavior Between

Experts and Novices by Investigating Eye Movement on Source Code Constructs During a Bug Fixing Task. In ACM
Symposium on Eye Tracking Research and Applications (Virtual Event, Germany) (ETRA ’21 Short Papers). Association
for Computing Machinery, New York, NY, USA, Article 30, 6 pages. https://doi.org/10.1145/3448018.3457424

[4] Richard Andersson, Linnea Larsson, Kenneth Holmqvist, Martin Stridh, and Marcus Nyström. 2017. One algorithm

to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms. Behavior Research
Methods 49, 2 (April 2017), 616–637. https://doi.org/10.3758/s13428-016-0738-9

[5] Roman Bednarik, Teresa Busjahn, Agostino Gibaldi, Alireza Ahadi, Maria Bielikova, Martha Crosby, Kai Essig, Fabian

Fagerholm, Ahmad Jbara, Raymond Lister, Pavel Orlov, James Paterson, Bonita Sharif, Teemu Sirkiä, Jan Stelovsky,

Jozef Tvarozek, Hana Vrzakova, and Ian van der Linde. 2020. EMIP: The eye movements in programming dataset.

Science of Computer Programming 198 (Oct. 2020), 102520. https://doi.org/10.1016/j.scico.2020.102520

[6] Joshua A.C. Behler, Drew T. Guarnera, Bonita Sharif, and Jonathan I. Maletic. 2025. Automated Fixation Error Correction

to Support Eye Tracking Studies on Source Code - Artifact. https://osf.io/pk9zv/

[7] Dave Binkley, Marcia Davis, Dawn Lawrie, Jonathan I. Maletic, Christopher Morrell, and Bonita Sharif. 2013. The

Impact of Identifier Style on Effort and Comprehension. Empirical Software Engineering 18, 2 (April 2013), 219–276.

https://doi.org/10.1007/s10664-012-9201-4

[8] Teresa Busjahn. 2021. Empirical analysis of eye movements during code reading: evaluation and development of methods.
Ph. D. Dissertation. Paderborn. https://nbn-resolving.org/urn:nbn:de:hbz:466:2-38777 Tag der Verteidigung: 04.03.2021.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

https://doi.org/10.1145/3448018.3457425
https://doi.org/10.3758/s13428-025-02597-3
https://doi.org/10.3758/s13428-025-02597-3
https://doi.org/10.1145/3448018.3457424
https://doi.org/10.3758/s13428-016-0738-9
https://doi.org/10.1016/j.scico.2020.102520
https://osf.io/pk9zv/
https://doi.org/10.1007/s10664-012-9201-4
https://nbn-resolving.org/urn:nbn:de:hbz:466:2-38777

ETRA04:16 Guarnera et al.

[9] T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H. Paterson, C. Schulte, B. Sharif, and S. Tamm. 2015. Eye Movements

in Code Reading: Relaxing the Linear Order. In 2015 IEEE 23rd International Conference on Program Comprehension.
IEEE, Florence, Italy, 255–265. https://doi.org/10.1109/ICPC.2015.36

[10] Teresa Busjahn, Roman Bednarik, and Carsten Schulte. 2014. What Influences Dwell TimeDuring Source Code Reading?:

Analysis of Element Type and Frequency As Factors. In Symposium on Eye Tracking Research and Applications (ETRA
’14). ACM, Safety Harbor, Florida, USA, 335–338. https://doi.org/10.1145/2578153.2578211 event-place: Safety Harbor,

Florida.

[11] Teresa Busjahn, Carsten Schulte, and Andreas Busjahn. 2011. Analysis of Code Reading to Gain More Insight in

Program Comprehension. In 11th Koli Calling International Conference on Computing Education Research (Koli Calling
’11). ACM, Koli, Finland, 1–9. https://doi.org/10.1145/2094131.2094133 event-place: Koli, Finland.

[12] M. L. Collard, M. J. Decker, and J. I. Maletic. 2011. Lightweight Transformation and Fact Extraction with the srcML

Toolkit. In 2011 IEEE 11th International Working Conference on Source Code Analysis and Manipulation. 173–184.
https://doi.org/10.1109/SCAM.2011.19

[13] M. L. Collard, M. J. Decker, and J. I. Maletic. 2013. srcML: An Infrastructure for the Exploration, Analysis, and

Manipulation of Source Code: A Tool Demonstration. In 2013 IEEE International Conference on Software Maintenance.
516–519. https://doi.org/10.1109/ICSM.2013.85

[14] Andrew T. Duchowski. 2017. Eye Tracking Methodology: Theory and Practice (3rd ed.). Springer Publishing Company,

Incorporated.

[15] Anna Maria Feit, Shane Williams, Arturo Toledo, Ann Paradiso, Harish Kulkarni, Shaun Kane, and Meredith Ringel

Morris. 2017. Toward Everyday Gaze Input: Accuracy and Precision of Eye Tracking and Implications for Design. In

Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17).
Association for Computing Machinery, New York, NY, USA, 1118–1130. https://doi.org/10.1145/3025453.3025599

[16] Michael C. Frank, Edward Vul, and Rebecca Saxe. 2012. Measuring the Development of Social Attention Using

Free-Viewing. Infancy 17, 4 (2012), 355–375. https://doi.org/10.1111/j.1532-7078.2011.00086.x

[17] Kenneth Holmqvist, Marcus Nyström, and Fiona Mulvey. 2012. Eye tracker data quality: what it is and how to measure

it. In Proceedings of the Symposium on Eye Tracking Research and Applications (Santa Barbara, California) (ETRA ’12).
Association for Computing Machinery, New York, NY, USA, 45–52. https://doi.org/10.1145/2168556.2168563

[18] Anthony J. Hornof and Tim Halverson. 2002. Cleaning up systematic error in eye-tracking data by using required

fixation locations. Behavior Research Methods, Instruments, & Computers: A Journal of the Psychonomic Society, Inc 34, 4
(Nov. 2002), 592–604. https://doi.org/10.3758/bf03195487

[19] Aulikki Hyrskykari. 2006. Utilizing eye movements: Overcoming inaccuracy while tracking the focus of attention

during reading. Computers in Human Behavior 22, 4 (2006), 657–671. https://doi.org/10.1016/j.chb.2005.12.013 Attention

aware systems.

[20] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Exploratory Study of How Developers

Seek, Relate, and Collect Relevant Information during Software Maintenance Tasks. IEEE Transactions on Software
Engineering 32, 12 (Dec. 2006), 971–987. https://doi.org/10.1109/TSE.2006.116

[21] Bo Liu, Qi-Chao Zhao, Yuan-Yuan Ren, Qing-JuWang, and Xue-Lian Zheng. 2018. An elaborate algorithm for automatic

processing of eye movement data and identifying fixations in eye-tracking experiments. Advances in Mechanical
Engineering 10, 5 (May 2018), 1687814018773678. https://doi.org/10.1177/1687814018773678

[22] Sebastian Lohmeier. 2015. Experimental Evaluation and Modelling of the Comprehension of Indirect Anaphors in a
Programming Language. Master’s thesis. Technische Universiteit, Berlin, Germany. http://www.monochromata.de/

master_thesis/ma1.0.pdf

[23] Niloofar Mansoor, Cole S. Peterson, Michael D. Dodd, and Bonita Sharif. 2024. Assessing the Effect of Programming

Language and Task Type on Eye Movements of Computer Science Students. ACM Trans. Comput. Educ. 24, 1, Article 2
(Jan. 2024), 38 pages. https://doi.org/10.1145/3632530

[24] Sun Microsystems. 1997. Java Code Conventions. https://www.oracle.com/technetwork/java/codeconventions-

150003.pdf. [Accessed 22-10-2024].

[25] Mishra, Abhijit, Michael Carl, and Pushpak Bhattacharya. 2012. A heuristic-based approach for systematic error

correction of gaze data for reading. In First Workshop on Eye-tracking and Natural Language Processing. Mumbai, India,

71–80. http://www.aclweb.org/anthology/W12-4906

[26] Diederick C. Niehorster, Tim H. W. Cornelissen, Kenneth Holmqvist, Ignace T. C. Hooge, and Roy S. Hessels. 2018.

What to expect from your remote eye-tracker when participants are unrestrained. Behavior Research Methods 50, 1 (01
Feb 2018), 213–227. https://doi.org/10.3758/s13428-017-0863-0

[27] Marcus Nyström, Richard Andersson, Kenneth Holmqvist, and Joost van de Weijer. 2013. The influence of calibration

method and eye physiology on eyetracking data quality. Behavior Research Methods 45, 1 (March 2013), 272–288.

https://doi.org/10.3758/s13428-012-0247-4

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1145/2578153.2578211
https://doi.org/10.1145/2094131.2094133
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1111/j.1532-7078.2011.00086.x
https://doi.org/10.1145/2168556.2168563
https://doi.org/10.3758/bf03195487
https://doi.org/10.1016/j.chb.2005.12.013
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1177/1687814018773678
http://www.monochromata.de/master_thesis/ma1.0.pdf
http://www.monochromata.de/master_thesis/ma1.0.pdf
https://doi.org/10.1145/3632530
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://www.aclweb.org/anthology/W12-4906
https://doi.org/10.3758/s13428-017-0863-0
https://doi.org/10.3758/s13428-012-0247-4

Automated Fixation Error Correction to Support Eye Tracking Studies on Source Code ETRA04:17

[28] Marc-Antoine Nüssli. 2011. Dual Eye-Tracking Methods for the Study of Remote Collaborative Problem Solving. Ph. D.
Thesis. Ecole Polytechnique Federale De Lausanne, Lausanne, Switzerland. https://infoscience.epfl.ch/record/169609/

files/EPFL_TH5232.pdf;

[29] Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. 2018. A Survey on the Usage of Eye-Tracking in

Computer Programming. Comput. Surveys 51, 1 (April 2018), 5:1–5:58. https://doi.org/10.1145/3145904

[30] Anneli Olsen. 2012. The Tobii I-VT Fixation Filter. Technical Report. 21 pages. http://www.vinis.co.kr/ivt_filter.pdf

[31] Pontus Olsson. 2007. Real-time and Offline Filters for Eye Tracking. Master’s thesis. KTH Electrical Engineering,

Stockholm, Sweden. https://pdfs.semanticscholar.org/4167/7844556582adc68a5a14dbb1cea0b28d9016.pdf

[32] Christopher Palmer and Bonita Sharif. 2016. Towards automating fixation correction for source code. In Proceedings of
the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications (Charleston, South Carolina) (ETRA ’16).
Association for Computing Machinery, New York, NY, USA, 65–68. https://doi.org/10.1145/2857491.2857544

[33] P. Rodeghero, C. Liu, P. W. McBurney, and C. McMillan. 2015. An Eye-Tracking Study of Java Programmers and

Application to Source Code Summarization. IEEE Transactions on Software Engineering 41, 11 (Nov. 2015), 1038–1054.

https://doi.org/10.1109/TSE.2015.2442238

[34] Dario D. Salvucci and Joseph H. Goldberg. 2000. Identifying Fixations and Saccades in Eye-tracking Protocols. In

2000 Symposium on Eye Tracking Research & Applications (ETRA ’00). ACM, Palm Beach Gardens, Florida, USA, 71–78.

https://doi.org/10.1145/355017.355028 event-place: Palm Beach Gardens, Florida, USA.

[35] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A systematic literature review on the usage of

eye-tracking in software engineering. Information and Software Technology 67 (Nov. 2015), 79–107. https://doi.org/10.

1016/j.infsof.2015.06.008

[36] R. Smith. 2007. An Overview of the Tesseract OCR Engine. In Ninth International Conference on Document Analysis
and Recognition (ICDAR 2007), Vol. 2. 629–633. https://doi.org/10.1109/ICDAR.2007.4376991

[37] Andrew C. Trapp, Wen Liu, and Soussan Djamasbi. 2019. Identifying Fixations in Gaze Data via Inner Density and

Optimization. INFORMS Journal on Computing (April 2019). https://doi.org/10.1287/ijoc.2018.0859

[38] Raimondas Zemblys, Diederick C. Niehorster, Oleg Komogortsev, and Kenneth Holmqvist. 2018. Using machine

learning to detect events in eye-tracking data. Behavior Research Methods 50, 1 (Feb. 2018), 160–181. https://doi.org/

10.3758/s13428-017-0860-3

[39] Yunfeng Zhang and Anthony J. Hornof. 2011. Mode-of-disparities error correction of eye-tracking data. Behavior
Research Methods 43, 3 (01 Sep 2011), 834–842. https://doi.org/10.3758/s13428-011-0073-0

Received November 2024; revised February 2025; accepted March 2025

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 3, Article ETRA04. Publication date: May 2025.

https://infoscience.epfl.ch/record/169609/files/EPFL_TH5232.pdf;
https://infoscience.epfl.ch/record/169609/files/EPFL_TH5232.pdf;
https://doi.org/10.1145/3145904
http://www.vinis.co.kr/ivt_filter.pdf
https://pdfs.semanticscholar.org/4167/7844556582adc68a5a14dbb1cea0b28d9016.pdf
https://doi.org/10.1145/2857491.2857544
https://doi.org/10.1109/TSE.2015.2442238
https://doi.org/10.1145/355017.355028
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1109/ICDAR.2007.4376991
https://doi.org/10.1287/ijoc.2018.0859
https://doi.org/10.3758/s13428-017-0860-3
https://doi.org/10.3758/s13428-017-0860-3
https://doi.org/10.3758/s13428-011-0073-0

	Abstract
	1 Introduction
	2 Related Work
	3 Data Set and Methodology
	3.1 Privacy and Ethics
	3.2 Preprocessing
	3.3 Token Classification
	3.4 Verifiability

	4 Golden Set
	4.1 Generating the Golden Set
	4.2 Golden Set Token Frequency - RQ1 Results

	5 srcGaze: Fixation Correction Algorithm
	6 Results for srcGaze's effectiveness (RQ2) and efficiency (RQ3)
	7 Threats to Validity
	8 Conclusions and Future Work
	References

