Extending Support for Analyzing Eye Tracking Studies on Python
Source Code in iTrace

Joshua A.C. Behler
Kent State University
Kent, Ohio, USA
jbehler1@kent.edu

Bonita Sharif
University of Nebraska-Lincoln
Lincoln, Nebraska, USA
bsharif@unl.edu

ABSTRACT

The work presents a small pilot study of developers reading Python
programs in the iTrace eye-tracking infrastructure. The main objec-
tive is to understand how adding new languages to srcML impacts
the usage of iTrace. iTrace uses srcML to extract syntactic infor-
mation from the source code being examined. This allows iTrace
to automatically determine regions of interest (ROIs) and drasti-
cally reduce the amount of time and effort required to process the
collected eye tracking data. The srcML infrastructure has a beta
version to support Python and which allows iTrace to fully support
analysis of eye tracking studies on Python source code. This work
demonstrates the viability of supporting new languages in iTrace.

CCS CONCEPTS

« Software and its engineering; - Human-centered computing
— Empirical studies in HCI;

KEYWORDS
eye-tracking python

ACM Reference Format:

Joshua A.C. Behler, Zachary Kozak, Kang-il Park, Bonita Sharif, and Jonathan
L. Maletic. 2025. Extending Support for Analyzing Eye Tracking Studies on
Python Source Code in iTrace. In 2025 Symposium on Eye Tracking Research
and Applications (ETRA °25), May 26-29, 2025, Tokyo, Japan. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3715669.3725867

1 INTRODUCTION

iTrace is a powerful suite of tools for performing eye-tracking
studies on software while using an IDE. The iTrace infrastructure
[Guarnera et al. 2018] is used by researchers to conduct studies
focused on the comprehension of source code [Abbad-Andaloussi
et al. 2022; Abid et al. 2019a,b; Bansal et al. 2024; Martins et al. 2024;
Park et al. 2023; Peterson et al. 2019; Yoshioka and Uwano 2024;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ETRA °25, May 26-29, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1487-0/2025/05

https://doi.org/10.1145/3715669.3725867

Zachary Kozak
University of Nebraska-Lincoln
Lincoln, Nebraska, USA
zkozak2@unl.edu

Kang-il Park
University of Nebraska-Lincoln
Lincoln, Nebraska, USA
kangil. park@huskers.unl.edu

Jonathan I. Maletic
Kent State University
Kent, Ohio, USA
jmaletic@kent.edu

Zyrianov et al. 2022]. As the scope of programming increases, the
need to conduct studies on different styles and types of code is
critical. Thus, it is inevitable that eye-tracking studies will need to
be conducted on different programming languages. To date, many
of the above mentioned studies are done mainly in Java.

Currently, iTrace supports eye tracking on any programming
language, or even any plain-text file. The iTrace infrastructure can
record eye-movement information from an eye-tracking session re-
gardless of what a participant looks at while doing a task. It provides
the character or specific token that a user looks at. However, by
itself, iTrace cannot provide syntactical information of the tokens
and characters viewed. This is not an easy process and requires the
implementation of custom abstract syntax trees (ASTs) to identify
the syntactical context of every token in the source code. To enable
researchers to understand the context of what the participant looks
at, iTrace leverages srcML [Collard et al. 2011, 2013], an advanced
infrastructure that provides an XML AST that contains the original
source code, whitespace, and formatting. By providing a srcML
file alongside the eye-tracking data, iTrace’s various tools, such as
iTrace-Toolkit [Behler et al. 2023b] and iTrace-Visualize [Behler
et al. 2023a, 2024], provide syntactical information alongside the
eye-movement data.

As of this writing, srcML only officially supports four languages:
C, C++, C#, and Java. This means that if a researcher wishes to
perform an eye-tracking study in a different language, they must
provide their own mechanism to map the eye-movement data to
the source code. iTrace enables this as much as possible by saving
all processed eye movement data in a SQLite database, allowing for
easy processing by anyone who needs custom analysis.

Recently, the sccML development team has begun work on sup-
porting other programming languages. There is currently an in-
development branch of the project that provides support for the
Python programming language. Python is an very popular pro-
gramming language, and being able to conduct eye-tracking studies
on popular languages seamlessly is invaluable to the software engi-
neering community. Because iTrace already makes extensive use of
srcML, we investigate how well the iTrace infrastructure handles
changes and additions to srcML, and if iTrace can support advanced
processing of Python eye-tracking data now that srcML has begun
supporting Python.

https://doi.org/10.1145/3715669.3725867
https://doi.org/10.1145/3715669.3725867

ETRA °25, May 26-29, 2025, Tokyo, Japan

2 RELATED WORK

There are a small number of eye-tracking studies that target Python
code. Turner et al. compares the comprehension of C++ and Python
code [Turner et al. 2014], finding little difference in time spent
looking at the code or task response accuracy. However, students
fixate on buggy lines at significantly different rates between the
languages. The study does not use syntactic information to explore
how code structure influence these differences. In addition this
study was done on very small Python code snippets where the
stimulus was an image.

Roberto et al. uses eye-tracking to explore the effects of Python’s
style guide on the readability of Python [Roberto et al. 2024]. This
study indicates that some PEP 8 style guidelines reduce fixation
duration and regressions for novices. They do not mention using
syntactic analysis to determine PEP 8 compliance or inform con-
clusions about code comprehension.

Chauhan explores which Python language features are classified
by participants depending on the language paradigm in which it
was written [Chauhan 2022]. Using eye tracking, the tokens and
participants’ reading strategies are analyzed in relation to accuracy
and classification of the language paradigm. Although this study
utilizes iTrace-Toolkit to find line and column information, the
authors wrote their own external script to map the gazes to tokens
in the source code.

Segedinac et al. investigate Python code readability in under-
graduate programming courses using eye-tracking data [Segedinac
et al. 2024]. After programmatically obtaining structural (syntactic),
textual (linguistic), and observational (gaze behavior) features of
the code, they use a machine learning model to determine that
readability can be well-predicted by tracking how an actual per-
son reads it. They use their own method of extracting syntactic
information from abstract syntax trees of the code.

All of the above work involves the exploration of Python source
code, but they all either do not use source code syntactic information
to perform analysis or do but need to implement their own ad-hoc
method to extract the syntactical information from the fixations
and source code.

3 PRELIMINARY STUDY ON USING ITRACE
WITH PYTHON

To explore the efficacy of iTrace and how well it can support new
languages that srcML supports, we perform a preliminary study on
Python code. Our goal is to confirm that iTrace supports working
with new languages that sccML comes to support seamlessly and
demonstrate an example of how to perform an eye-tracking study
on Python code.

3.1 Hardware Apparatus and Software
Environment

To track the eyes of participants, both a Tobii X3-120 eye-tracker
running at 120Hz (at one location) and a Tobii Pro Spectrum eye-
tracker running at 150Hz (at another location) are used. The study
is performed with a height-adjustable table, which is raised or
lowered to accommodate each participant’s height. The lab setup
was similar at both locations collecting data.

Behler et al.

To gather eye-tracking data, we use the iTrace-Core! program.
Additionally, we use the PyCharm IDE part of the recently released
iTrace-JetBrains? plugin to gather contextual information from the
IDE such as font size, current file, and line/column info. We choose
PyCharm to facilitate this study due to its specialization as a Python
development environment. PyCharm is also a popular IDE among
Python developers.

Additionally, we use the Open Broadcaster Software (OBS) and
the iTrace-ScreenRecording® plugin to record the computer’s screen
during the session. This provides us with a video of the exact length
of the eye-tracking session, which can be used for various visu-
alizations using the iTrace-Visualize? tool. Refer to Figure 1 for
an example of what the participant sees within the IDE. Because
we use iTrace-ScreenRecord to record the screen including partici-
pant’s faces, we show a picture-in-picture of the webcam output
(blurred for anonymity) on the bottom right of the recorded screen.

3.2 Participants

Our preliminary study is conducted at two different locations and
includes four total participants. The study is conducted in a neutral
closed lab location with no distractions or external stimulation.
Our participants are comprised of three graduate students and one
undergraduate student. All four participants are familiar with eye-
tracking and Python. The participants had not seen the provided
Python code before beginning the session. They were only made
aware that they would look at various sorting algorithms in Python
before starting the session.

3.3 Tasks and Stimuli

Each participant is provided a series of instructions on how to set up
the eye-tracking session, what to do during the session, and how to
process the data collected. Additionally, each participant is provided
with four Python files. Each file contains a different implementation
of a common sorting algorithm. We chose to use files from the
"TheAlgorithms" Python repository® due to its collection of various
algorithms and the code’s extensive documentation. Specifically,
we chose the bubble sort, heap sort, insertion sort, and quick sort
implementations.

During the eye-tracking session, each participant is asked to
open one of the sorting algorithm files, read through the code, and
document what the worst-case runtime is for the current algorithm.
If the participants already knew the runtime of a particular sort,
they were asked to verify that the code implemented the algorithm
correctly. No time limit is imposed on the participants; however,
each participant finished the session in under 12 minutes.

3.4 Data Processing

After all the participants finish their tracking sessions, we begin
to process the data using the iTrace infrastructure pipeline as de-
scribed next.

First, we need the srcML representation of the four Python files
so that we can map the eye-movement data to specific Python

Uhttps://github.com/iTrace-Dev/iTrace-Core
Zhttps://github.com/iTrace-Dev/iTrace-JetBrains/
Shttps://github.com/iTrace-Dev/iTrace-ScreenRecording
*https://github.com/iTrace-Dev/iTrace- Visualize
Shttps://github.com/TheAlgorithms/Python

https://github.com/iTrace-Dev/iTrace-Core
https://github.com/iTrace-Dev/iTrace-JetBrains/
https://github.com/iTrace-Dev/iTrace-ScreenRecording
https://github.com/iTrace-Dev/iTrace-Visualize
https://github.com/TheAlgorithms/Python

Extending Support for Analyzing Eye Tracking Studies on Python Source Code in iTrace

@

T OO0 @ &

ETRA °25, May 26-29, 2025, Tokyo, Japan

Current File

Figure 1: The JetBrains PyCharm IDE as seen by the participants. The bottom status bar shows the x,y pixel -> line,col towards
the right. The blurred picture to the bottom right is the webcam output of the participant’s face captured by OBS (optional and

not visible to participant during recording).

tokens. To acquire this, we download and build the beta branch of
stcML® which has support for Python. Using this version of srcML,
we process the four Python files into a single srcML archive file. We
then manually inspect the srcML to ensure that there are no errors
in its output, such as incorrect nesting or any unclosed tags, as we
do not want any bugs in srcML to affect our result. This process is
only done due to the beta nature of srcML’s Python support, and
will be unnecessary when Python support in srcML is fully tested
and released. srcML did not parse any of the Python files incorrectly,
and we had nothing to manually adjust. Figure 2 demonstrates a
small snippet of Python srcML.

We then load the four eye-tracking sessions into iTrace-Toolkit.
Using the srcML archive, we map the gaze data to tokens and
syntactic info from the source code using the iTrace-Toolkit Ul
We then generate fixations using the IDT algorithm [Salvucci and
Goldberg 2000] and default settings listed — duration window of
100ms, dispersion of 125, and maximum gaze span of 1000ms.

Additionally, we run the collected data through iTrace-Visualize.
Using iTrace-Visualize, we generate a marked-up video of the eye-
tracking session, tokenized heat-maps of fixations on each file, and
Region of Interest (ROI) scarf plots detailing the timeline of when
participants view each section. We manually create the ROIs for
each file by grouping together lines with a similar purpose - doc-
string documentation, importing, function implementation, etc. If

Shttps://github.com/srcML/srcML/tree/python

this was an actual study, the researchers would determine what
their ROIs would be based on their research questions and hypothe-
ses. All of the generated data and visualizations are available in our
online artifact [Behler et al. 2025]..

4 RESULTS

This section describes the use of PyCharm, and the two post-
processing tools used after the data is collected.

4.1 Using iTrace-JetBrains — PyCharm

iTrace-JetBrains is one of iTrace’s newest plugins, and it supports
the entire suite of the JetBrains family of IDEs. The GitHub repos-
itory for iTrace-JetBrains says it was tested on Intelli], PyCharm,
WebStorm, and Rust Rover - the IDEs which JetBrains offers a com-
munity edition of. PyCharm is a natural fit for Python eye-tracking
studies due to its innate focus on Python development.

Some participants made use of PyCharm’s built-in linting fea-
tures while performing the study. Despite reading the small pop-up
that would appear when hovering over code which has an issue,
there were no difficulties in collecting the IDE contextual data.

https://github.com/srcML/srcML/tree/python

ETRA °25, May 26-29, 2025, Tokyo, Japan

1+ if len(collection) < 2:
2 return collection
pivot_index = randrange(len(collection))

(6
+

Behler et al.

<if_stmt><if>if <condition><expr><call><name>len</name><argument_list>(<argument><expr><name>collection</name></expr

></argument>)</argument_list»</call> <operator><</operator> <literal type="number"”:>2</literal></expr></condition

><block>:<block content>

o

<return>return <expr><name>collection</name></expr></return>

><expr><call><name>len</name><argument_list>(<argument><expr><name>collection</name></expr:</argument>)</argument_list

7 </block_content></block></if></if_stmt>

8 <expr stmt:r<expr><name>pivot index</name> <operator>=</operator> <call><name>randrange</name><argument list>(<argument
></call></expr></argument>)</argument list></call></expr></expr stmt:>

1e

Figure 2: An example of Python code (taken from quick_sort.py) (top) and its corresponding srcML representation (bottom).

4.2 Using iTrace-Toolkit

The next step is to load in the data collected into iTrace-ToolKkit.
Loading in PyCharm contextual/iTrace-Core data and Python sr-
cML archive data into iTrace-Toolkit was seamless. We did not
encounter any errors or issues. Across the four sessions, 305,001
gaze points were recorded. Of those, 286,779 (94%) gaze points had
corresponding IDE contextual data recorded. Of the 286,779 gazes
with IDE context, 94,397 were located off of the source code tokens,
either in PyCharm’s project explorer, toolbar, or locations in the
code editor with no tokens or whitespace. Additionally, there were
no difficulties in calculating fixations in iTrace-Toolkit either. As
mentioned previously, iTrace already supports fixation calculation
over any kind of stimulus. However, because iTrace can now load in
Python srcML into iTrace-Toolkit, our generated fixations now also
contain syntactical information from the source code. For this work,
we used the I-DT algorithm provided by iTrace-Toolkit with default
settings. In total we had 5,374 fixations from the four eye-tracking
sessions. 2,975 (55%) of these fixations occurred on a token within
the source code. There were 214 unique syntactic categories that
the participants viewed from the code. Table 1 details some of the
more significant categories viewed

Note that in this work, we are not trying to make any claims
about how proficient the participants are at reading and compre-
hending Python code. We are simply analyzing our small dataset
to highlight the usability of iTrace to conduct eye-tracking studies
on Python code.

By far the most viewed individual category are the docstrings
present within the files. This is expected, as these code stimuli
were explicitly chosen for their large docstrings. After docstrings,
comments are the next most viewed. The combination of these
two imply that the participants spent the majority of their time
reading the function’s documentation of the code. Additionally,
the participants looked within top-level for-loops over 1000 times.
This highlights that they did evaluate the actual functionality of
the sorting algorithms, and did not rely solely on documentation
to answer the questions (although the quick sort implementation
did not use a traditional for-loop).

det [EEP [E6FE (GHEGEEEA: list(int]) -> DEEE[int):
A pHEe ByEHoH SMPISMEREEtion of the heap sort algorithm

fparan EOIISEEISH: - FMEEEBIE ordered collection of heterogeneous EOMPARABIE items
{ESEUPA: the sanme Eolllection BEdETed by AScending

Examples:
>>> fHeap Sort
[0, 2, 2, 3, b

(@, B, 3, 2, 21
B8 heap BOHE (
[] !
(

[
]
[
>>> heap sort ([
[-45, -5, -2)
L

>>> BEapsort (8, M, Bf 28§ 123, -S§ 8, S50, 2008 8, 1))
[E200% -80M -5, o, 3, 4, 7, 8, 9, 28, 123]

-2, B5, -451)

B = Ten(unsorted)

£6x i fin kange(n V7 B E A, - -1):
heapify (UnseEted, &, n)

E6% § id range(n = 1, O -1):
unsortedf0], unsorted(d] - GnSorted(:], Unsertedlo]
heapifyl(unsoEted, 0, i)

return unsorted

if f{EME == " main

import doctest

HEEEEEE. Lcstmod ()

uscr AnpuE = input ("Entcr HUMBEES scparated by a BOWmE:\n").strip()

if user input:
Unsorted - [int (item) for HEEM in user_input.split(",")]
print (r"{H8&P_sort (unsorted) = }") -

1 7 13 19 25 32

Figure 3: A segment of the combined heatmap of heap_sort.py
across all four participants

4.3 Using iTrace-Visualize

In order to test iTrace-Visualize [Behler et al. 2023a, 2024], we use all
of the various visualization options the tool offers such as heatmaps
and scarfplots. From these visualizations, we can make a couple
of observations about the data, which previously would require
in-depth analysis to notice.

Our first observation is that the participants did not need to
reread large parts of the docstrings and comments in the code. While
they on average read the documentation thoroughly, there was little
need to go back and reread. The heatmaps show that the tokens
in the documentation rarely saw more than four fixations across
all four participants. Additionally, the participants also seemed to
rarely look at any of the type annotations included on the sorting
functions. Function names and parameters see some level of fixation
activity, but their annotations seldom do. The participants also did
not spend much time reading the "main" section at the bottom of
the file. This is likely because the main section’s purpose is to the

Extending Support for Analyzing Eye Tracking Studies on Python Source Code in iTrace

File: bubble_sort.py

ETRA °25, May 26-29, 2025, Tokyo, Japan

Session Timeline

Participant 3

Participant 4

Participant 2

[
T e

= ROI1:11
ROI2: 444

e ROI3: 4554
ROI_4: 57-98

W ROIS: 99-106

= ROL6: 109132

m Off-screen/in Other File
Non-ROI Line

0o
IV R N BN

0 100000 200000 300000 400000 500000 600000 700000
Time in milliseconds

Participant 1

Figure 4: A region of interest scarf plot of the bubble_sort.py file. Of particular note is ROI_1, which is a single line and contains
a single import statement. Only participant 3 looked at the region, while everyone else started by reading the next region

Table 1: Some of the viewed categories across the four eye-
tracking sessions and their counts.

Full Syntactic Catgeory Semantic Number of

Meaning Fixations
unit->function->block-> | Docstring in | 785
block_content-> function
expr_stmt->expr->literal
unit->function->block-> Comment 147
block_content->comment within func-

tion
unit->expr_stmt->expr-> Docstring at | 93
literal top of file
unit->function->name A function’s | 36

name
unit->function->block-> | Within a | 1006
block_content->for->... for-loop in a

function

Table 2: Total number of minutes spent looking at each file
across the participants

File Time (min)
bubble_sort.py 11.6 min
heap_sort.py 4.7 min
insertion_sort.py 7.2 min
quick_sort.py 5.9 min

test the sorting algorithm, and is thus inconsequential to answering
the question we asked.

The participants spend the majority of their time examining the
various conditions and facets of the sorting algorithms. For example,
in the bubble sort iterative implementation, the participants fixated
on the swapped variable being set to false more often than any
other token. In the heap sort implementation as shown in Figure 3,
the most viewed token is the unsorted argument to the heapify
call in the first for loop.

Looking at the ROI graphs, the first thing we notice is the time
spent per-file. The bubble sort implementation was looked at the
longest, while heap sort was the shortest. Table 2 details the times
spent per file. The increase in time on bubble_sort.py is likely due
to a couple factors: the fact that bubble_sort.py was invariably the
first file the participants viewed, meaning they needed to spend
the most time getting used to the format of the code, and the fact
that bubble_sort.py had two implementations - both a recursive
and iterative version of bubble sort.

Additionally, we notice that the participants rarely viewed any
small ROIs which contain an import statement. All files except
heap_sort.py contain at least one import statement, which were
grouped into their own ROL These ROIs are rarely viewed by the
participants. Figure 4 showcases this on the bubble_sort.py file.

From the marked-up videos, we notice an issue with one of the
participants eye-tracking setups. This participant, who was the lone
participant to use the Tobii X3-120 tracker at a differing location
from the other three, had a much wider spread on their gazes.
This suggests either an issue with the lower-speed eye-tracker, or
a fundamental issue with the eye-tracking setup. Visualizing the
quality of the data collected is greatly helpful for finding issues in
experiments, as issues like this can be caught early during the pilot
phase before more participants are recruited.

ETRA °25, May 26-29, 2025, Tokyo, Japan

5 CONCLUSIONS

The iTrace infrastructure offers a simple yet powerful solution to
running eye-tracking studies on software. iTrace offers high-level
processing of four programming languages - C, C++, C#, and Java
- all languages which the srcML project officially supports. With
srcML testing support for Python, iTrace is also able to support
eye-tracking studies on Python source code, including advanced
analysis like token mapping and source-code aware visualizations.
iTrace is capable of supporting new languages that are added to
srcML, meaning the eye-tracking community can conduct studies
on these languages with ease. The results of this preliminary fea-
sibility study show the value of having such tools built into the
iTrace eye tracking infrastructure to support the ease of analysis.

REFERENCES

Amine Abbad-Andaloussi, Thierry Sorg, and Barbara Weber. 2022. Estimating de-
velopers’ cognitive load at a fine-grained level using eye-tracking measures. In
Proceedings of the 30th IEEE/ACM International Conference on Program Comprehen-
sion (Virtual Event) (ICPC °22). Association for Computing Machinery, New York,
NY, USA, 111-121. https://doi.org/10.1145/3524610.3527890

Nahla J. Abid, Bonita Sharif, Natalia Dragan, Hend Alrasheed, and Jonathan I. Maletic.
2019a. Developer Reading Behavior While Summarizing Java Methods: Size and
Context Matters. In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE). 384-395. https://doi.org/10.1109/ICSE.2019.00052

Nahla J. Abid, Bonita Sharif, Natalia Dragan, Hend Alrasheed, and Jonathan I. Maletic.
2019b. Developer Reading Behavior While Summarizing Java Methods: Size and
Context Matters. In 2019 IEEE/ACM 41st International Conference on Software Engi-
neering (ICSE). 384-395. https://doi.org/10.1109/ICSE.2019.00052

Aakash Bansal, Robert Wallace, Zachary Karas, Ningzhi Tang, Yu Huang, Toby Jia-Jun
Li, and Collin McMillan. 2024. Programmer visual attention during context-aware
code summarization. arXiv preprint arXiv:2405.18573 (2024).

Joshua Behler, Gino Chiudioni, Alex Ely, Julia Pangonis, Bonita Sharif, and Jonathan I.
Maletic. 2023a. iTrace-Visualize: Visualizing Eye-Tracking Data for Software Engi-
neering Studies. In 2023 IEEE Working Conference on Software Visualization (VIS-
SOFT). 100-104. https://doi.org/10.1109/VISSOFT60811.2023.00021

Joshua Behler, Praxis Weston, Drew T. Guarnera, Bonita Sharif, and Jonathan I. Maletic.
2023b. iTrace-Toolkit: A Pipeline for Analyzing Eye-Tracking Data of Software
Engineering Studies. In 2023 IEEE/ACM 45th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). 46-50. https://doi.org/10.
1109/ICSE-Companion58688.2023.00022

Joshua A.C. Behler, Zachary Kozak, Kang il Park, Bonita Sharif, and Jonathan I. Maletic.
2025. Extending Support for Analyzing Eye Tracking Studies on Python Source
Code in iTrace - Artifact. https://osf.io/4cngk/

Joshua A. C. Behler, Giovanni Villalobos, Julia Pangonis, Bonita Sharif, and Jonathan L.
Maletic. 2024. Extending iTrace-Visualize to Support Token-based Heatmaps and
Region of Interest Scarf Plots for Source Code. In 2024 IEEE Working Conference on
Software Visualization (VISSOFT). 139-143. https://doi.org/10.1109/VISSOFT64034.
2024.00027

Behler et al.

Jigyasa Chauhan. 2022. An Empirical Study on the Classification of Python Language
Features Using Eye-TrackingFeatures Using Eye-Tracking. Master’s thesis. University
of Nebraska - Lincoln.

M. L. Collard, M. J. Decker, and J. I. Maletic. 2011. Lightweight Transformation and
Fact Extraction with the srcML Toolkit. In 2011 IEEE 11th International Working
Conference on Source Code Analysis and Manipulation. 173-184. https://doi.org/10.
1109/SCAM.2011.19

M. L. Collard, M. J. Decker, and J. I. Maletic. 2013. srcML: An Infrastructure for the
Exploration, Analysis, and Manipulation of Source Code: A Tool Demonstration.
In 2013 IEEE International Conference on Software Maintenance. 516-519. https:
//doi.org/10.1109/ICSM.2013.85

Drew T. Guarnera, Corey A. Bryant, Ashwin Mishra, Jonathan I. Maletic, and Bonita
Sharif. 2018. iTrace: eye tracking infrastructure for development environments. In
10th ACM Symposium on Eye tracking Research and Applications. Warsaw, Poland,
3. https://doi.org/10.1145/3204493.3208343

Vinicius Martins, Pedro Lopes Verardo Ramos, Breno Braga Neves, Maria Vitoria
Lima, Johny Arriel, Jodo Victor Godinho, Joanne Ribeiro, Alessandro Garcia, and
Juliana Alves Pereira. 2024. Eyes on Code Smells: Analyzing Developers’ Responses
During Code Snippet Analysis. In Simpdsio Brasileiro de Engenharia de Software
(SBES). SBC, 302-312.

Kang-il Park, Pierre Weill-Tessier, Neil C. C. Brown, Bonita Sharif, Nikolaj Jensen, and
Michael Kélling. 2023. An eye tracking study assessing the impact of background
styling in code editors on novice programmers’ code understanding. In Proceedings

of the 2023 ACM Conference on International Computing Education Research - Volume
1 (Chicago, IL, USA) (ICER ’23). Association for Computing Machinery, New York,

NY, USA, 444-463. https://doi.org/10.1145/3568813.3600133

Cole S. Peterson, Nahla J. Abid, Corey A. Bryant, Jonathan I. Maletic, and Bonita
Sharif. 2019. Factors influencing dwell time during source code reading: a large-
scale replication experiment. In Proceedings of the 11th ACM Symposium on Eye
Tracking Research & Applications (Denver, Colorado) (ETRA ’19). Association for
Computing Machinery, New York, NY, USA, Article 38, 4 pages. https://doi.org/10.
1145/3314111.3319833

Pablo Roberto, Rohit Gheyi, José Aldo Silva da Costa, and Marcio Ribeiro. 2024. As-
sessing Python Style Guides: An Eye-Tracking Study with Novice Developers.
arXiv:2408.14566 [cs.SE] https://arxiv.org/abs/2408.14566

Dario D. Salvucci and Joseph H. Goldberg. 2000. Identifying Fixations and Saccades
in Eye-tracking Protocols. In Proceedings of the 2000 Symposium on Eye Tracking
Research & Applications (Palm Beach Gardens, Florida, USA) (ETRA °00). ACM, New
York, NY, USA, 71-78. https://doi.org/10.1145/355017.355028

Milan Segedinac, Goran Savi¢, Ivana Zeljkovi¢, Jelena Slivka, and Zora Konjovi¢. 2024.
Assessing code readability in Python programming courses using eye-tracking.
Computer Applications in Engineering Education 32, 1 (2024), e22685.

Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. 2014. An eye-tracking
study assessing the comprehension of c++ and Python source code. In Proceedings
of the Symposium on Eye Tracking Research and Applications (Safety Harbor, Florida)
(ETRA °14). Association for Computing Machinery, New York, NY, USA, 231-234.
https://doi.org/10.1145/2578153.2578218

Haruhiko Yoshioka and Hidetake Uwano. 2024. An Analysis of Program Compre-
hension Process by Eye Movement Mapping to Syntax Trees. In Networking and
Parallel/Distributed Computing Systems: Volume 18. Springer, 137-152.

Vlas Zyrianov, Cole S Peterson, Drew T Guarnera, Joshua Behler, Praxis Weston, Bonita
Sharif, and Jonathan I Maletic. 2022. Deja Vu: semantics-aware recording and
replay of high-speed eye tracking and interaction data to support cognitive studies
of software engineering tasks—methodology and analyses. Empirical software
engineering 27, 7 (2022), 168.

https://doi.org/10.1145/3524610.3527890
https://doi.org/10.1109/ICSE.2019.00052
https://doi.org/10.1109/ICSE.2019.00052
https://doi.org/10.1109/VISSOFT60811.2023.00021
https://doi.org/10.1109/ICSE-Companion58688.2023.00022
https://doi.org/10.1109/ICSE-Companion58688.2023.00022
https://osf.io/4cnqk/
https://doi.org/10.1109/VISSOFT64034.2024.00027
https://doi.org/10.1109/VISSOFT64034.2024.00027
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1145/3204493.3208343
https://doi.org/10.1145/3568813.3600133
https://doi.org/10.1145/3314111.3319833
https://doi.org/10.1145/3314111.3319833
https://arxiv.org/abs/2408.14566
https://arxiv.org/abs/2408.14566
https://doi.org/10.1145/355017.355028
https://doi.org/10.1145/2578153.2578218

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary Study on Using iTrace with Python
	3.1 Hardware Apparatus and Software Environment
	3.2 Participants
	3.3 Tasks and Stimuli
	3.4 Data Processing

	4 Results
	4.1 Using iTrace-JetBrains – PyCharm
	4.2 Using iTrace-Toolkit
	4.3 Using iTrace-Visualize

	5 Conclusions
	References

